COVID-19 has been spreading all around the world, and threatening global health. In this situation, identifying and isolating infected individuals rapidly has been one of the most important measures to contain the epidemic. However, the standard diagnosis procedure with RT-PCR (Reverse Transcriptase Polymerase Chain Reaction) is costly and time-consuming. For this reason, pooled testing for COVID-19 has been proposed from the early stage of the COVID-19 pandemic to reduce the cost and time of identifying the COVID-19 infection. For pooled testing, how many samples are tested in group is the most significant factor to the performance of the test system. When the arrivals of test requirements and the test time are stochastic, batch-service queueing models have been utilized for the analysis of pooled-testing systems. However, most of them do not consider the false-negative test results of pooled testing in their performance analysis. For the COVID-19 RT-PCR test, there is a small but certain possibility of false-negative test results, and the group-test size affects not only the time and cost of pooled testing, but also the false-negative rate of pooled testing, which is a significant concern to public health authorities. In this study, we analyze the performance of COVID-19 pooled-testing systems with false-negative test results. To do this, we first formulate the COVID-19 pooled-testing systems with false negatives as a batch-service queuing model, and then obtain the performance measures such as the expected number of test requirements in the system, the expected number of RP-PCR tests for a test sample, the false-negative group-test rate, and the total cost per unit time, using the queueing analysis. We also present a numerical example to demonstrate the applicability of our analysis, and draw a couple of implications for COVID-19 pooled testing.