검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, infrared thermometry techniques were used to conduct surface wetting performance tests (wicking tests) on micropillar structures with good fluid supply capabilities to enhance the critical heat flux. Wicking tests were conducted based on various micropillar shapes (i.e., diameter and spacing) to investigate the surface wetting performance near the boiling point of the fluid(~100°C). The surface temperature was increased from 20°C to 95°C, to examine the wicking performance The shape of the micropillars were quantified by the roughness and the effect of the roughness and temperature on the wicking performance was analyzed. As a result, we confirmed that the roughness of the micropillars increases the capillary pressure, improving the wicking performance. The sample D04 G10 with the highest roughness coefficient at room temperature (r=2.51) exhibited the highest wicking coefficient, showing a 170% improvement in wicking performance compared to D04G20 with the smallest roughness coefficient at room temperature(r=1.51). Additionally, the D04 G10 sample (r=2.51) recorded a 50% improvement in the wicking coefficient at the highest temperature(95°C) compared to room temperature(20°C). The wicking coefficient data will be utilized as a database for developing a new correlation for critical heat flux.
        4,000원