일반적으로 하천의 유량은 댐과 같은 수공구조물에 의해 조정된 유량으로 수자원계획을 위해서 필요한 자연유량과는 차이가 크다. 수자원계획 을 수립함에 있어 자연 유입량 정보는 댐 운영과 수문분석을 위한 필수적인 정보이다. 본 연구에서는 댐 유역 일유입량 모의기법을 위한 통합 모형 을 개발하였다. 첫째, 장기 강우-유출 모형의 입력강우자료로 사용하기 위하여 평균 및 중앙값과 같은 통계적 모멘트를 효과적으로 재현하고 극치 강우량 재현에 유리한 불연속 Kernel-Pareto 확률분포 기반의 강우모의기법을 통하여 강우모의를 수행하였다. 둘째, SAC-SMA 장기 강우-유출 모형의 매개변수를 Bayesian MCMC 기법을 통하여 최적화하여 산정된 매개변수의 사후분포를 활용하여 댐 유입량 시나리오 도출하였다. 댐 유 역을 대상으로 개발된 모형을 평가한 결과 자연유량과 통계적으로 유사한 특성을 가지는 시나리오를 생성할 수 있었으며, 물수지 분석 등과 같은 수자원계획을 위한 시나리오로 활용이 가능할 것으로 판단된다.
본 연구에서는 기후변화에 따른 충주댐 유입량을 모의하였으며 이때 발생되는 불확실성을 분석하였다. GCM별 불확실성을 고려하기 위해 IPCC AR4 A2 시나리오에 의한 4개의 GCM 강수량 결과를 추계학적 모형인 TFN 모형에 적용하였다. TFN 모형의 불확실성을 고려하기 위하여 정규분포를 따르는 100개의 잡음항을 생성하여 앙상블 유입량 시나리오를 생성하였고, 결과적으로 400개의 미래 유입량 시나리오를 제시하였다. 분석 결과 과거 30년과 비교하여 미래에는 다른 변화율을 보였으며, 모든 시나리오에서 전 기간에 걸쳐 연 유입량 증가 양상을 보였고 여름철의 유입량 증가, 봄철의 유입량 감소가 전망되었다.