본 논문에서는 축대칭 형상의 점탄성 구조물이 정적 하중을 받을 때에 대한 시간영역에서의 유한요소해법의 정식화 과정을 제시한다. 또한, 여러 가지 경계조건을 갖는 점탄성 중공구나 원통 문제들의 변위나 응력 이론해들을 탄성-점탄성 상응원리를 이용하여 유도하고 제시한다. 이때 점탄성 재료는 부피변형이 탄성적이고 전단변형은 3요소로 구성된 표준선형 고체처럼 거동한다고 가정한다. 구대칭, 축대칭 및 평면변형률 유한요소모텔을 이용한 수치결과들을 유도된 이론해들과 비교하여 제시된 유한요소해법과 이론해들의 타당성과 정확성을 보인다.
본 논문에서는 평판구조물의 정적 및 동적해석에 사용할 목적으로 성능이 향상된 평판유한요소를 제시하였다. 이 요소는 비적합변위형과 선택적 감차적분방법 그리고 대체전단변형률장을 복합적으로 적용하여 각각의 장점들을 포함하는 향상된 거동을 보여주고 있다. 또한 비적합변위형의 적용으로 발생되는 조각시험의 실패 문제점을 해결하기 위하여 직접수정법을 평판유한요소의 개선에 사용하였다. 대표적인 검증문제에 대한 수치해석작업을 통하여 본 연구에서 개발한 요소는 가상적인 제로에너지모드 및 전단잠김현상의 발생과 같은 문제를 나타내지 않음을 알 수 있었다. 특히 찌그러진 형상으로 모형화 한 경우에 있어서도 전단잠김현상이 발생하지 않았다. 본 연구에서 수행한 동적반응해석 시험에 있어서도 이론해와 잘 일치하는 결과를 보여주었다.