The design and implementation of acoustic metamaterials have garnered significant interest for their potential in noise and vibration reduction and control. However, the process of fabricating metamaterials is often perceived as challenging and confined to specialized fields. In this study, we aim to remove these barriers by demonstrating that it is possible to design and implement acoustic metamaterials using a simple array of commonly available PVC pipes. We designed and fabricated metamaterials using PVC pipe arrays and validated their performance through both numerical simulations and experimental testing. The experiments were conducted using standard audio equipment, and the results showed consistent trends with the numerical simulations. This research demonstrates that acoustic metamaterials can be effectively realized using accessible materials like PVC pipes, providing a practical approach to noise reduction and control.
Research has been conducted on acoustic metamaterials that control the transmission characteristics of reflected and refracted waves using phase delay by resonators. Using one-dimensional theory, the phase delay equations for the 1/4 wavelength and Helmholtz resonator are presented. These one-dimensional analysis results are compared with the results predicted by three-dimensional FEM. The advantages and disadvantages of 1/4 wavelength and Helmholtz resonator were confirmed in implementing phase delay. An acoustic metamaterial with a refraction angle of 30° was manufactured using multiple tubes and then the sound pressure distribution was measured. A relatively large sound pressure was measured at the target position of 30°, which was compared with the 3D FEM analysis results. Simulations confirmed that a phase delay range closer to 2π was more effective in refraction, but varying the number of resonators was found to have minimal impact on which additional research is needed for generalization.