본 논문에서는 평활화 유한요소법(Smoothed finite element method)을 도입한 응력 기반 구배 탄성론(Gradient elasticity)의 2차원 경 계치 문제에 대한 연구를 수행하였다. 구배 탄성론은 기존 탄성론에서는 표현할 수 없는 미소규모의 크기 의존적인 기계적 거동을 설 명하기 위해 제안되었다. 구배 탄성체론에서 고차 미분 방정식을 두 개의 2차 미분 방정식으로 분할하는 Ru-Aifantis 이론을 사용하기 때문에 평활화 유한요소법에 적용이 가능하게 된다. 본 연구에서 경계치 문제를 해결하기 위해 평활화 유한 요소 프레임워크에 스태 거드 방식(Staggered scheme)을 사용하여 국부 변위장과 비국부 응력장을 평활화 영역 및 요소에서 각각 계산하였다. 구배 탄성에서 중요한 변수인 내부 길이 척도의 영향을 측정하기 위해 일련의 수치 예제를 수행하였다. 수치 해석 결과는 제안한 기법이 내부 길이 척도에 따라 균열 선단과 전위 선에 나타나는 응력 집중을 완화할 수 있음을 보여준다.
The most comprehensive and particularly reliable method for non-destructively measuring the residual stress of the surface layer of metals is the sin method. When X-rays were used the relationship of sin measured on the surface layer of the processing metal did not show linearity when the sin method was used. In this case, since the effective penetration depth changes according to the changing direction of the incident X-ray, becomes a sin function. Since cannot be used as a constant, the relationship in sin cannot be linear. Therefore, in this paper, the orthogonal function method according to Warren’s diffraction theory and the basic profile of normal distribution were synthesized, and the X-ray diffraction profile was calculated and reviewed when there was a linear strain (stress) gradient on the surface. When there is a strain gradient, the X-ray diffraction profile becomes asymmetric, and as a result, the peak position, the position of half-maximum, and the centroid position show different values. The difference between the peak position and the centroid position appeared more clearly as the strain (stress) gradient became larger, and the basic profile width was smaller. The weighted average strain enables stress analysis when there is a strain (stress) gradient, based on the strain value corresponding to the centroid position of the diffracted X-rays. At the 1/5 max height of X-ray diffraction, the position where the diffracted X-ray is divided into two by drawing a straight line parallel to the background, corresponds approximately to the centroid position.