염화동 에칭 공정에서 발생한 철염 폐수를 전구체로 활용하여 마그네타이트(Fe3O4)를 합성하고, 이를 인산염 흡착 및 회수에 적용하였다. 합성 조건 최적화를 위하여 Box–Behnken Design를 적용한 반응표면분석법(Response Surface Methodology, RSM)을 활용하여 회귀모델을 구축하였다. 모델을 통해서 도출한 최적 합성 조건은 Fe3+/Fe2+ 비율 1.7, NaOH 농도 0.7 N, 숙성 시간 86.3분으로 확인되었다. 해당 조건에서 합성된 마그네타이트는 10.9 mg-P g-1 마그네타이트의 인산염 흡착 용량을 나타내었다. 기기 분석 결과, 최적화된 마그네타이트는 고순도 결정 구조와 초상자성 특성을 나타냈으며, 비표면적과 반응성이 향상된 것이 확인되었다. 또한 연속 회분식 반응조(Sequencing Batch Reactor, SBR)에 적용한 결과, 5회 반복 흡착–탈착 동안 평균 인산염 회수율은 46.6%로 나타났다. 유입 인산염 농도가 200 mg-P L-1의 고농도 조건에서도 회수율이 안정적으로 유지되어, 마그네타이트가 인산염 흡착제로서의 활용 가능성과 안정성을 입증하였다.
Phosphorus is a vital resource for sustaining agriculture and nutrition, but a limited non-renewable resource. Thus, the recovery of phosphorus from waste activated sludge(WAS) was attempted by microwave heating and magnesium ammonium phosphorus(MAP) crystallization. Polyphosphate-accumulating organisms(PAOs) in WAS release phosphate from the cell when they are exposed to high temperature environments. Microwave heating caused phosphorus and ammonia to release from WAS. The amount was increased with increasing temperature, showing that 88.5% of polyphosphate present in the cells were released in the form of phosphate at 80oC. A similar result was also observed in the release of ammonia. On the other hand, both phosphorus and ammonia were crystallized with magnesium, and then was harvested as MAP. Phosphorus recovery rate reached almost 97.8%, but the ammonia was about 13.4%. These results cleary indicate that phosphorus could be recovered from WAS using a physiological trait of PAOs. Heavy metal analyses also show that the MAP crystal is useful and safe as a phosphorus fertilizer.