The flexural behavior of ECC according to the tensile strain capacity was analytically estimated with the layered section method. Moment-curvature curve was first obtained, then load-deflection relation was calculated. The analytical result indicated that there was noticeable increase in deflection at peak load with the higher tensile strain capacity within 3.0%, and it was found that more than 3% strain capacity did not provide higher deflection but helped improve the load resistance.
This research investigated the effects of matrix strength on the direct tensile behavior of high performance hybrid fiber reinforced cementitious composites (HPHFRCCs) at high strain rates. 3 different type matrixes were used (56 MPa, 81 MPa and 180 MPa). And macro fiber was long hooked fiber (H, =0.3 mm,=30 mm) and micro fiber was short smooth fiber (S, =0.2 mm, =13 mm). The volume content of macro fibers was 1.0% and the volume content of micro fibers was 1.0%. The high matrix strength clearly increased the tensile strength and peak toughness of HPHFRCCs even at high strain rates (74 ~ 161 /sec).