The demand for ceramic brackets, which have a high aesthetic purpose due to their high light transmission is increasing due to the application of poly-crystalline alumina material. Brackets using this material require stable properties that should not fracture during the treatment period. In this paper, the fracture strength of a ceramic bracket made of the same material used in clinical practice was checked by applying torque with a square stainless steel wire. The wire used in the test was prepared with cross-section sizes of 017 inch ✕ 025 inch, 018 inch ✕ 025 inch, and 019 inch ✕ 025 inch. There were a total of 150 bracket specimens and after ligating wires in the slots, torque was applied to each of 75 specimens in the gingival and occlusal directions. The torque test used digital torque meter equipment and the torque value at which the bracket slot fractured due to plastic deformation of the ligated wire was confirmed. Based on the resulting data we plan to use the data to recommend stable torque use and develop future bracket design.
As the demand for aesthetic orthodontic treatment increases, the use of self-ligating ceramic brackets is increasing. For stable treatment, there should be no fracture or deformation of the self-ligation ceramic bracket door. Therefore, considering the situation in which labial displacement of teeth occurs in the orthodontic treatment stage. For this study, a model of the mandibular anterior region of a ceramic self-ligating bracket with a passive sliding door mechanism was selected. The measured tensile force data was substituted into the simulation analysis conditions, and the tensile force, stress distribution, and deformation values were analyzed using the finite element method. Using this, it is able to use the design elements of the orthodontic bracket that should be considered as design inputs in the development stage.