검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2018.09 KCI 등재 서비스 종료(열람 제한)
        본 연구는 다목적함수를 고려한 입자군집최적화(Particle Swarm Optimization, PSO) 알고리즘을 Python으로 개발하고, Soil and Water Assessment Tool (SWAT) 모형에 적용하여 자동보정 알고리즘의 적용 가능성을 평가하였다. SWAT 모형의 유출 해석은 안성천의 공도 수위 관측소 상류유역(364.8 km2)을 대상으로 하였으며, 공도 지점의 2000년부터 2015년까지의 일 유량 자료를 이용하였다. PSO 자동보정은 결정계수 (coefficient of determination, R2), 평균제곱근오차(RMSE), NSE 모형효율계수(Nash-Sutcliffe Efficiency, NSEQ), 특히 중간유출과 기저유출의 보정을 위해 NSEINQ (Inverse Q)를 활용하여 SWAT을 보정하였다. PSO을 통한 SWAT 모형의 자동보정과 수동보정의 유출해석 결과, 각각 R2 는 0.64, 0.55, RMSE는 0.59, 0.58, NSEQ는 0.78, 0.75, NSEINQ는 0.45, 0.09의 상관성 분석결과를 보였다. PSO 자동보정 알고리즘은 수동보정에 비하여 높은 향상을 보였는데 특히 유출의 감수곡선을 개선시켰으며 적절한 매개변수 추가(RCHRG_DP)와 매개변수 범위의 설정으로 수동 보정의 한계를 보완하였다.
        2.
        2012.01 KCI 등재 서비스 종료(열람 제한)
        SWMM은 도시유역의 홍수유출 해석에 관한 대표적인 모형으로서 국 내외에서 활용도가 높은 반면, 다수의 불명확한 매개변수를 포함하고 있어 사용에 어려움이 있다. 본 연구에서는 SWMM에 집합체 혼합진화(SCE-UA) 알고리즘을 결합하여 자동 보정 모듈을 개발하였다. 최적화 문제는 목적함수에 따라 그 결과가 상이하게 도출될 수 있으므로 연구에서는 5개의 단일 목적함수를 적용하여 가장 적합한 목적함수를 도출하였다. 그리고 홍수유출 해석에는 첨두유량의 정확성이 중요하므로 이를 고려할 수 있는 다목적함수를 구성하였고, 파레토 최적해의 결정을 통해 결과를 도출하였다. 작성된 자동 보정 모듈은 구로1 빗물펌프장 유역에 내린 2009년 3개의 강우사상에 적용되었다. 다목적함수의 구성을 통해 자동 보정된 결과는 단일 목적함수에 의해 도출된 결과보다 첨두유량과 유출체적의 오차를 포함한 대부분의 모형평가 지표에서 우수한 것으로 나타났다. 또한, 다목적함수에 의해 보정된 모형의 검증 결과도 신뢰적인 것으로 분석되었다. 본 연구에서 개발된 SWMM의 자동 보정 프로그램은 도시유역의 다양한 홍수유출 해석 문제에 활용될 수 있을 것으로 전망된다.