이 연구에서는 지표 관측 자료와 위성 자료 그리고 GWNU 단층 복사 모델을 이용하여 맑은 상태의 전천 일사 량을 계산하였으며, 전운량에 따라 관측 및 모델의 일사량 값을 비교 분석하였다. 연구 자료는 2012년 강릉원주대학교 복사 관측소의 전천 일사량, 기온, 기압, 습도, 에어로졸 등의 관측 자료와 OMI 센서의 오존전량 자료 그리고 구름의 유무 및 전운량을 판단하기 위하여 자동 전운량 장비인 Skyview 자료를 이용하였다. 전운량이 0 할인 맑은 날의 경우 관측 값과 모델 값이 0.98로 높은 상관계수를 나타내었으나 RMSE가 36.62Wm−2로 비교적 높게 나타났다. 이는 Skyview 장비가 얇은 구름이나 박무 및 연무 등의 기상상태를 판단하지 못하였기 때문이다. 흐린 날의 경우 구름의 영 향을 보정하기 위해 전운량과 두 값의 차에 대한 비율을 이용한 회귀식을 복사 모델에 적용하였으며, 장비의 오탐지를 제외한 경우 상관계수가 0.92로 높은 상관성을 보였으나 RMSE가 99.50 Wm−2으로 높은 값을 보였다. 더 정확한 분석 을 위해서는 직달 성분의 차폐 유무 및 구름 광학 두께를 포함한 다양한 구름 요소의 추가적인 분석이 요구된다. 이 연구결과는 분 또는 시간에 따른 일사량을 산출하여 일사량이 관측되지 않는 지역에서 유용하게 사용될 수 있다.
본 연구에서는 CCD 카메라가 장착된 Skyviewer로부터 촬영된 하늘 영상 자료를 이용하여 전운량을 산출하는 알고리즘을 개발하였다. 전운량 산출은 RGB 영상 내의 차폐 영역을 제거하고 GBR 빈도분포에 따른 영상을 분류하며, RBR 경계값을 결정하여 구름 화소를 분류한다. 분류된 구름 화소에서 태양광 영역을 제거한 후 유효성 검사를 통해 전운량을 산출하게 된다. 전운량 산출 알고리즘의 정확성을 검증하기 위하여 관측소와 가장 가까운 강원지방기상청의 목측 전운량 자료와 편이(Bias), 평균제곱근오차(RMSE), 상관계수를 분석하였다. 선정된 사례는 계절별 일 사례로 8시부터 17시까지의 정시 자료를 사용하였다. 분석 결과 Skyviewer로부터 산출된 전운량의 편이는 평균적으로 −0.8할의 차이를 보였으며, 평균제곱근오차는 1.6할로 전운량의 차이가 2할 내에서 나타나고 있었다. 또한, 두 관측소는 떨어진 거리의 차이가 있음(약 4 km)에도 불구하고 상관계수가 모든 사례에서 평균 0.91 이상으로 매우 높았다.