Guided missiles are a one-shot system that finishes their purpose after being used once, and due to the long-term storage until launch, the storage reliability is calculated during development, and performance is maintained through periodic inspections until the life cycle arrives. However, the reliability standards applied in the development of guided missiles were established by analyzing data accumulated by the United States during long-term operation in the country, and since they are different from our environment, the 00 guided missiles that have been deployed in the armed forces for more than 10 years under the premise that there is a difference from actual reliability. As a result of verifying the appropriateness of the current inspection cycle by analyzing the actual reliability of the missile, the necessity of changing the inspection period was derived because it was higher than the predicted reliability. It is proposed to build and utilize a lifespan management system that can systematically collect all data such as shooting and maintenance results by classification, and to establish a reliable reliability standard based on the accumulated data.
Since guided missiles with the characteristics of the one-shot system remain stored throughout their entire life cycle, it is important to maintain their storage reliability until the launch. As part of maintaining storage reliability, period of preventive test is set up to perform preventive periodic test, in this case failure detection rate has a great effect on setting up period of preventive test to maintain storage reliability. The proposed method utilizes failure rate predicted by the software on the basis of MIL-HDBK-217F and failure mode analyzed through FMEA (Failure Mode and Effect Analysis) using data generated from the actual field. The failure detection rate of using the proposed method is applied to set periodic test of the actual guided missile. The proposed method in this paper has advantages in accuracy and objectivity because it utilizes a large amount of data generated in the actual field.
고속도로교량을 위한 위험도기반점검주기를 제안하였다. 고속도로 교량유지관리시스템에서 얻은 상태데이터를 분석하여 교량상태 열화 에 영향을 주는 위해성인자를 찾았다. 그러한 인자와 상태열화사이의 특정한 상관성을 찾았다. 이들을 이용하여 위해성점수를 평가하는데 이용하였다. 여러 가지 위해성 인자들을 종합하여 최종 위해성을 높음, 보통, 낮음의 세 단계로 구분하였다. 취약성은 교량의 현재상태로 평가하였다. 위험도행렬을 점검주기를 위해 제안하였다. C, D, E등급 교량의 점검주기는 현행대로 유지하였다. 그러나, 보통과 높음으로 위 해성이 평가된 A 및 B 등급교량은 점검주기를 최대 6년까지 연장하였고 최소주기는 현행과 같이 3년으로 하였다. 위험도 평가에 따라 점 검주기를 보정하므로써 평균 점검인력을 27% 절약할 수 있었다.
Risk Based Inspection(RBI) Period was proposed for highway bridges in Korea. Hazard factors affecting bridge condition deterioration were found by analyzing condition data from Highway Bridge Management System(HBMS). Certain level of correlations between those factors and condition deterioration were found. They are used to evaluate hazard score. Summarizing several hazard factors, final hazard is classified as three level;high, moderate, low. Vulnerability is assessed only by the current state of bridge. Then, risk matrix is suggested for inspection periods. Inspection periods of the bridges with grade C, D, and E are maintained the same as before. But, those of grade A and B with moderate and high hazard score are elongated to maximum 6 years while the maximum inspection period is three years at present. By adjusting inspection period according to risk assessment, it was shown that 27% of average inspection manpower can be saved.
Risk Based Inspection(RBI) Period was proposed for highway bridges in Korea. Hazard factors affecting bridge condition deterioration were found by analyzing condition data from Highway Bridge Management System(HBMS). Certain level of correlations between those factors and condition deterioration were found. They are used to evaluate hazard score. Summarizing several hazard factors, final hazard is classified as three level;high, moderate, low. Vulnerability is assessed only by the current state of bridge. Then, risk matrix is suggested for inspection periods. Inspection periods of the bridges with grade C, D, and E are maintained the same as before. But, those of grade A and B with moderate and high hazard score are elongated to maximum 6 years while the maximum inspection period is three years at present. By adjusting inspection period according to risk assessment, it was shown that 27% of average inspection manpower can be saved.
We have carried out the bridge inspections according to the laws not considering the characteristics of damages. Also the current condition based inspection cannot consider the rate of bridge deterioration. But it is reasonable to classify the inspection interval according to the risk of each bridge.
This suggests the risk based inspection methodology.
We have carried out the bridge inspections according to the laws not considering the characteristics of damages. It is reasonable to classify the inspection interval according to the risk of each bridge. This suggests the risk based inspection inspection methodology.
해상송전철탑 구조물에 있어서 구조 및 재료 손상에 대해 주기적으로 안전점검을 실시하고, 그 결과를 이용한 수명관리(life management)의 시행은 적극 추천되는 일이다. 본 연구에서는 영흥도 시화호 내에 있는 총 6개의 해상송전철탑에 대해서 강재부재에 대해 3가지, 콘크리트 기초에 대해 5가지, 해수 중 강관파일 및 해수 자체에 대해 4가지 형태의 열화점검을 각각 수행하였다. 강재에 대한 점검 항목들은 외관조사, 부재두께, 도막상태 등에 대한 것이고, 콘크리트 기초에 있어서는 균열형상, 압축강도, 중성화깊이, 염화물 함유량 등에 대한 항목, 그리고 해중 강관파일에 있어서의 전위 및 양극조사에 따른 부식정도, 동영상 촬영 및 해수의 수질환경성 평가 등에 대한 항목이다. 이와 같은 정기적 열화점검은 연속 3년 동안 매년 10월경에 동일위치에 대해 평가하였다. 결과적으로 본 연구에서는 이러한 자료를 체계적으로 활용함으로써 해상송전철탑 안전성 유지관리에 유익하게 적용될 수 있는 새로운 열화지표를 개발하였다.