검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        낙동강 하구 기수생태 복원이 본격으로 논의가 진행 전인 2016년까지는 하류 수위의 예측을 위해 하구에서 수km 떨어진 기존 조위관측소(부산 및 가덕도)의 측정 자료를 활용하여 분석을 수행하였지만, 조위와 위상 차이로 인해 예측이 용이하지 않았다. 따라서, 낙 동강 하굿둑 인접 외해역에서 조석 영향을 받는 수위관측치를 이용하여 조석조화분해를 통한 정밀한 조위 예측 산정의 필요성이 대두되 어 본 연구를 수행하였다. 연구의 방법으로는 낙동강하굿둑 인근 외해역에서 10분 간격으로 기간별 관측자료의 저장상태 및 이상자료 유 무를 확인하고, 조석조화분해 프로그램인 TASK2000(Tidal Analysis Software Kit) Package를 이용하여 관측조위와 예측조위를 1대 1 비교하여 회귀상관분석을 수행하였다. 분석 결과, 관측조위와 예측조위간의 상관도는 0.9334로 높게 나타났으며, 당해 연도의 조위예측 분석시 직전 연도의 1년 조석관측 자료를 조화분해하여 산출된 조화상수를 이용하여 조위예측을 실시하면 보다 정확한 결과를 산출할 수 있음을 확인 하였다. 이를 바탕으로 2022년 예측조위를 생성하여 낙동강 하구 기수생태 복원의 해수유입량의 산정에 활용 중이다.
        4,000원
        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 조위 관측자료를 이용하여 부산항에서의 장기 조위 자료를 생성하는 Long Short-Term Memory (LSTM)으로 구현된 순환신경망 모델을 개발하였다. 국립해양조사원의 부산 신항과 통영에서 관측된 조위 자료를 모델 입력 자료로 사용하여 부산항의 조위 를 예측하였다. 모델에 대하여 2019년 1월 한 달의 학습을 수행하였으며, 이후 2019년 2월에서 2020년 1월까지 1년에 대하여 정확도를 계 산하였다. 구축된 모델은 부산 신항과 통영의 조위 시계열을 함께 입력한 경우에 상관계수 0.997 및 평균 제곱근 오차 2.69 m로 가장 성 능이 높았다. 본 연구 결과를 바탕으로 딥러닝 순환신경망 모델을 이용하여 임의 항만의 장기 조위 자료 예측이 가능함을 알 수 있었다.
        4,000원