In this paper a study on prediction of the wave resistance performance of a very large crude oil carrier(300K VLCC) was taken into account according to the changes in L/B/T. The wave resistance of the ship was calculated using the potential based panel method in which exact nonlinear free surface boundary conditions and the trim and sinkage were considered. The panel cutting method were implemented to generate the hull surface panel and the free surface panel were generated using the variable free surface method. The numerical analysis was carried out according to the 12 different ships. The wave resistance coefficients and the wave patterns of the 12 different ships were compared with each other. As a result the wave resistance of a ship was found to be significantly affected in L/B than T.
In the present study, numerical algorithms for a high-speed planing ship were taken into account. The Rankine source panel method was applied to predict a flow phenomena around a ship. The Kelvin type free surface boundary condition and the exact nonlinear free surface boundary condition were compared to predict the wave system generated by the ship and the trim and sinkage state of the ship also were introduced. In order to deal with complex geometries of the planing ship the panel cutting method was adopted. The developed numerical analysis algorithm were applied to the R/V Athena ship and the numerical results were compared with the experimental results.