PURPOSES: This study aims to evaluate the effects of vehicle dynamic behaviors on ride quality. METHODS: Simulation and field test were conducted to analyze the behavior of a driving vehicle. The simulation program CarSIM was applied and an INS (Inertial Navigation System) was used for field experiments. A small simulator was developed to simulate vehicle behavior such as roll, pitch, and bounce. The panels evaluated the ride quality in five stages from “very satisfied”to “very dissatisfied.”Experiments were conducted on a total of 144 cases of vehicle behavior combinations. RESULTS: In both simulation and field tests, pitch is the largest and yaw the smallest. Especially in the field test, the amount of yaw is very low, about 7% of pitch and 18% of roll. The sensitive and extensive analysis conducted related ride quality with changing the frequency and amplitude. It was found that the most sensitive frequency range is 8 Hz across all amplitudes. Moreover, the combination of the roll and bounce was most sensitive to the ride quality at the low-frequency range. CONCLUSIONS: This result show that the vertical vehicle behavior (bounce) as well as the rotational behavior (roll and pitch) are highly correlated with ride quality. Therefore, it is expected that a more reasonable roughness index can be developed through a combination of vertical and rotational vehicle behavior.
노면의 요철은 차량의 동역학적 거동에 의해 시트의 진동 또는 움직임을 유발하여 탑승자의 승차감을 저해시키는 요인이 된다. 차량의 동역학적 거동을 단순화한 모델 중 IRI(International Roughness Index)를 비롯하여 널리 적용되고 있는 Quarter-car모델은 그림 1과 같이 네 바퀴 차량의 1/4 모델로서, 현가상질량(sprung mass)의 수직 변위를 계산하는 모델이다. 그러나 실제 차량의 거동은 수직 방향 거동 외에도 네 바퀴의 거동 차이에 의해 그림 2와 같이 중심축에 대한 회전 운동을 하며, 이로 인해 시트에 앉아 있는 탑승자의 회전진동을 유발한다. 탑승자의 진동방향은 3축 병진운동과 각 축의 회전운동으로 그 림 3과 같이 정의할 수 있으며, 직진 주행 중인 차량으로 가정할 경우 z축에 대한 회전운동인 yaw 거동은 발생하지 않는다. 따라서 본 연구에서는 roll, pitch 회전거동과 연직 z방향 거동에 노출된 탑승자의 승차 감을 모사, 평가하기 위해 그림 4와 같이 시뮬레이터를 개발하였다. 또한 sin파형에 반응하는 시뮬레이터 패널 평가결과를 바탕으로 인체에 민감하게 영향을 주는 차량 거동요소의 주파수 특성을 분석하였다.
시뮬레이터 분석을 통하여 roll, pitch 및 z방향 거동의 특성에 따라 시뮬레이터에 탑승한 패널의 정성 적인 승차감 평가가 달라지는 것을 그림 5와 같이 확인하였다. roll과 pitch거동의 경우 8Hz 대역에서, z방향 거동은 4~8Hz대역에서 패널의 승차감에 가장 민감한 영향을 주는 것으로 분석되었다. 또한 양호- 불량의 경계에 해당하는 거동특성을 비교한 결과, 동일한 회전변위에 대해서 전반적으로 pitch의 영향이 더 큰 것으로 나타났다. 향후 본 연구결과를 토대로 승차감을 정량적으로 표현할 수 있는 방안을 마련할 계획이며, 도로이용자에게 보다 우수한 승차감을 제공하는데 기여할 수 있을 것으로 판단된다.
고속도로는 도로이용자에게 최상의 서비스를 제공하는 도로이며 설문조사결과 고속도로를 이용함에 있 어 가장 큰 관심사는 안전을 포함한 주행쾌적성이다. 현재 고속도로를 포함한 모든 도로의 평탄성을 판단 하는 지수로서 IRI(International Roughness Index)가 활용되고 있으나, IRI는 2차원적 분석을 통한 결 과값이다. 즉, 1/4 Car(Quater Car)인 한 개의 바퀴에 대한 상하 움직임을 나타낸 것이라고 할 수 있다. 그러나 실제 차량은 노면의 프로파일 형태에 대한 4개의 바퀴에서 발생하는 움직임에 따라 차량내부의 탑 승자에게는 상, 하, 좌, 우의 거동이 발생하게 된다. 이러한 4개의 바퀴(Full-Car)를 통해 나타나는 차량 거동요소를 이용하여 도로관리 및 이용자 측면의 새로운 평탄성 관리기준을 마련하기 위해 차량거동 요소 별 거동량에 따른 정성적 평가를 수행하였다.
본 연구를 수행하기 위해 다음과 같이 세 가지 부분의 연구를 수행하였다.
첫 번째, 평탄성(승차감)에 영향을 주는 차량거동 요소를 선정하였다. 테스트 차량에 차량거동량 측정 이 가능하도록 센서를 설치하고 다양한 형태의 노면을 주행하여 나타나는 차량거동 요소를 확인하였으며 Roll, Pitch, Bounce의 거동이 주요 요소인 것을 확인하였다.
두 번째, 차량 거동요소를 구현할 수 있는 시뮬레이터를 제작하였다. 차량의 거동요소를 개별적으로 구 현하여 양호, 보통, 불량의 정성적인 평가를 수행하기 위해 시뮬레이터를 제작하였으며 Roll, Pitch, Bounce의 거동요소를 각각 조절하여 구현할 수 있었다.
세 번째, 차량 거동요소별 거동량에 따른 정성적 평가를 수행하였다. 시뮬레이터를 이용하여 Roll, Pitch, Bounce의 차량거동 요소 중 1개 요소의 거동량을 조절하여 구현하고 시뮬레이터에 1인이 탑승하 여 정성적인 평가를 수행하였다. 정성적 평가자는 성별, 직업군, 전문가여부, 운전여부 등을 고려하였다.