PURPOSES : The aim of this study is to develop a road fog information system based on the geostationary meteorological satellite (GK2A) for road weather services on highways. METHODS : Three threshold values sensitive to fog intensity in the GK2A fog algorithm were optimized using multi-class receiver operating characteristic analysis to produce road fog information depending on day and night. The developed a GK2A road fog algorithm that can detect three levels of road fog based on the visibility distance criteria (1km, 500m, and 200m). Furthermore, the GK2A road fog product was not only substituted with visibility objective analysis data in unknown and cloud-covered areas of satellite data, but also integrated with visibility distance data obtained from visibility gauges and CCTV image analysis to improve the accuracy of road fog information. RESULTS : The developed road fog algorithm based on meteorological satellite data provides real-time road fog information categorized into three levels (attention, caution, and danger) based on the visibility distance, with a spatial resolution of 1km × 1km and temporal resolution of 5 minutes. The road fog algorithm successfully detected road fog in five out of seven fog-related traffic accidents reported by Korean media outlets from 2020 to 2022, resulting in a detection success rate of 71.4%. The Korea Meteorological Administration is currently in the process of installing additional visibility gauges on 26 highways until 2025, and the next high-resolution meteorological satellite (GK5) is planned to be launched in 2031. We look forward to significantly improving the accuracy of the road fog hazard information service in the near future. CONCLUSIONS : The road fog information test service was initiated on the middle inner highway on July 27, 2023, and this service is accessible to all T-map and Kakao-map users through car navigation systems free of charge. After 2025, all drivers on the 26 Korean highways will have access to real-time road fog information services through their navigation systems.
태풍은 지구 시스템 내 상호작용을 일으키는 대표적인 해양-대기 현상으로 최근 들어 기후변화로 인해 점점 더 강력해지는 추세이다. 2022 개정 과학과 교육과정은 미래 사회 시민으로서의 디지털 소양 함양을 위하여 첨단 과학기술을 활용한 교수-학습 활동의 중요성에 대해 강조하고 있다. 따라서 교과서 삽화의 시공간적 한계점을 해결하고 지 구과학 분야에서 다루는 전지구적 규모의 빅데이터를 활용한 효과적인 수업자료의 개발이 필요하다. 본 연구에서는 PDIE (준비, 개발, 실행, 평가) 모형의 절차에 따라 천리안 위성 2A호 영상 자료를 활용하여 태풍의 경로를 시각화하는 탐구활동 자료를 개발하였다. 준비 단계에서는 2015 및 2022 개정 교육과정과 현행 교과서의 탐구활동 내용을 분석하 였다. 개발 단계에서는 관측 데이터를 수집, 처리, 시각화, 분석할 수 있는 일련의 과정들로 탐구활동을 구성하였으며, 간단한 조작만으로도 결과를 도출할 수 있는 GUI (Graphic User Interface) 기반 시각화 프로그램을 제작하였다. 실행 및 평가 단계에서는 학생들을 대상으로 수업을 진행하였으며 코드를 활용한 수업과 GUI 프로그램 활용 수업을 각각 실시하여 각 활동의 특징을 비교하고 학교 현장에서의 적용 가능성을 확인하였다. 본 연구에서 제시한 수업자료는 전문 적인 프로그래밍 지식이 없어도 GUI 기반으로 실제 관측 데이터를 활용한 탐구활동에 활용될 수 있으며, 이를 통해 학 생들의 지구과학 분야의 이해도와 디지털 소양 함양에 기여할 수 있을 것으로 기대된다.