검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper shows how effectively sonar data can be worked with approaches suggested for the indoor SLAM (Simultaneous Localization And Mapping). A sonar sensor occasionally provides wrong distance range due to the wide beam width and the specular reflection phenomenon. To overcome weak points enough to use for the SLAM, several approaches are proposed. First, distance ranges acquired from the same object have been stored by using the FPA (Footprint-association) model, which associates two sonar footprints into a hypothesized circle frame. Using the Least Squares method, a line feature is extracted from the data stored through the FPA model. By using raw sonar data together with the extracted features as observations, the visibility for landmarks can be improved, and the SLAM performance can be stabilized. Additionally, the SP (Symmetries and Perturbations) model, a representation of uncertain geometric information that combines the probability theory and the theory of symmetries, is applied in this paper. The proposed methods have been tested in a real home environment with a mobile robot.
        4,000원
        2.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        Representing an environment as the probabilistic grids is effective to sense outlines of the environment in the mobile robot area. Outlines of an environment can be expressed factually by using the probabilistic grids especially if sonar sensors would be supposed to build an environment map. However, the difficult problem of a sonar such as a specular reflection phenomenon should be overcome to build a grid map through sonar observations. In this paper, the NRF(Neighborhood Recognition Factor) was developed for building a grid map in which the specular reflection effect is minimized. Also the reproduction rate of the gird map built by using NRF was analyzed with respect to a true map. The experiment was conducted in a home environment to verify the proposed technique.