검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The annual total phosphorus load caused by public wastewater, nightsoil and livestock manure treatment facilities in Korea has been examined macroscopically. Annual domestic average phosphorus (P) inflows through the income of phosphate rock for the last five years (2012 - 2016) were analyzed as 76,598 tons/year. As of the year 2015, the total loadings of phosphorus attributed to public wastewater treatment facilities, nightsoil treatment facilities and livestock wastewater were estimated as 30,269 tons/year, 1,909 tons/year and 18,138 tons/year, respectively. Considering the amount of phosphorus imports, the annual phosphorus load from wastewater, livestock wastewater and excretions is equivalent to 39.5%, 23.7%, 2.5% and totally 65.7%(39.5% + 23.7% + 2.5%). Therefore, the introduction of phosphorus recovery and recycling processes for the public wastewater and livestock manure treatment facilities has been found to be effective because it could reduce the import amount of phosphate rock by up to 60% or more.
        4,300원
        2.
        2017.04 KCI 등재 서비스 종료(열람 제한)
        In recent years, the United States has used the Load Duration Curve (LDC) method to identify water pollution problems, considering the size of the pollutant load in the entire stream flow condition to effectively evaluate Total Maximum Daily Loads (TMDLs). A study on the improvement of the target water quality evaluation method was carried out by comparing evaluations of two consecutive years of water quality and LDC data for 41 unit watersheds (14 main streams and 27 tributaries). As a result, the achievement rate of the target water quality evaluation method, according to current regulations, was 68-93%, and that by the LDC method was 82-93%. Evaluating the target water quality using the LDC method results in a reduction in the administrative burden and the total amount of planning as compared to the current method.