Total organic carbon (TOC) will replace chemical oxygen demand (CODMn) as an effluent water quality standard in public sewage treatment works (PSTWs) from 2021 in Korea. To ensure effective control of TOC in the effluent, investigation was carried out into TOC levels and sewage treatment operation factors in five target PSTWs using anaerobic-anoxic-aerobic (A2O) processes, media, membrane, and sequencing batch reactor (SBR) technologies. TOC removal efficiencies appeared to be 93-96% on average. As a fraction of TOC, biodegradable dissolved organic carbon (BDOC) was reduced from 64% in the influent to 9% in the effluent in these PSTWs. During the investigation, biological treatment processes were applied flexibly for operation factors such as HRT, SRT, MLSS, F/M ratios and BOD volume loads, based on the influent characteristics and design conditions. As a result, we suggest efficient operating conditions in PSTWs by evaluating relationships between TOC removal and operation factors.
Rivers continuously transport terrestrial organic carbon matter to the estuary and the ocean, and they play a critical role in productivity and biodiversity in the marine ecosystem as well as the global carbon cycle. The amount of terrestrial organic carbon transporting from the rivers to ocean is an essential piece of information, not only for the marine ecosystem management but also the carbon budget within catchment. However, this phenomenon is still not well understood. Most large rivers in Korea have a well-established national monitoring system of the river flow and the TOC (Total Organic Carbon) concentration from the mountain to the river mouth, which are fundamental for estimating the amount of the TOC flux. We estimated the flux of the total terrestrial organic carbon of five large rivers which flow out to the Yellow Sea, using the data of the national monitoring system (the monthly mean TOC concentration and the monthly runoff of river flow). We quantified the annual TOC flux of the five rivers, showing their results in the following order: the Han River (18.0×109 gC yr-1)>>Geum River (5.9×109 gC yr-1)>Yeongsan River (2.6×109 gC yr-1)>Sumjin River (2.0×109 gC yr-1)>>Tamjin River (0.2×109 gC yr-1). The amount of the Han River, which is the highest in the Korean rivers, corresponds to be 4% of the annual total TOC flux of in the Yellow River, and moreover, to be 0.6% of Yangtze River.
본 연구에서는 패류양식장이 밀집되어 있는 고성·자란만 22개 정점, 거제·한산만 15개 정점, 진해만 18개 정점에 대하여 계절별(2월, 5월, 8월, 11월)로 퇴적물 환경인자(화학적산소요구량, 강열감량, 산휘발성황화물, 총유기탄소)와 저서 다모류 인자(출현 종 수, 서식밀도, 다양도, 균등도)에 대하여 분석하였다. 총유기탄소와 저서 다모류 다양도간의 상관계수가 0.61로 가장 높고 유의한 상관성(P<0.01)을 보여, 어장환경평가를 위한 대표인자로 설정하였다. 그 결과 두 인자간의 상관성에 의한 어장환경평가 기준 총유기탄소는 Peak Point 15 mg/g dry, Warning Point 26 mg/g dry, Contaminated Point 31 mg/g dry이었으며, 저서 다모류 다양도의 경우 H'≥2.6은 Good, 2.6>H'≥2.1은 Moderate, 2.1>H'≥1.2는 Poor, H'<1.2는 Bad로 분류되었다. 본 연구결과는 어장관리를 위한 환경기준 설정에 과학적 기여를 할 수 있을 것으로 판단된다.
Carbon biomass of plankton community, Total Organic Carbon (TOC) and Chlorophyll a (chl.a) concentration were examined in the SeoNakdong river from January to December in 2014, to assess composition of phyto- and zoo-plankton variation, to certify the correlation between chl.a and TOC and to determine the level of contribution of plankton carbon content to TOC in the reservoir-river ecosystem. The correlation level between TOC and chl.a was low in the year 2014 but exceptionally was highly correlated only during the period with cyanobacterial bloom. The high level of contribution of plankton carbon content to TOC was attributed to cyanobacterial carbon biomass from May to November and to Cladocera carbon biomass from March to May, November and December despite of its low abundance. These results suggest that there were inter-relationships between phytoplankton, zooplankton and TOC and also subtle consistency of their properties through the year. These patterns should be discussed in relation to the physiochemical and biological characteristics of the environment, as well as to allochthonous organic matters from non-point pollution sources.