Carbon biomass of plankton community, Total Organic Carbon (TOC) and Chlorophyll a (chl.a) concentration were examined in the SeoNakdong river from January to December in 2014, to assess composition of phyto- and zoo-plankton variation, to certify the correlation between chl.a and TOC and to determine the level of contribution of plankton carbon content to TOC in the reservoir-river ecosystem. The correlation level between TOC and chl.a was low in the year 2014 but exceptionally was highly correlated only during the period with cyanobacterial bloom. The high level of contribution of plankton carbon content to TOC was attributed to cyanobacterial carbon biomass from May to November and to Cladocera carbon biomass from March to May, November and December despite of its low abundance. These results suggest that there were inter-relationships between phytoplankton, zooplankton and TOC and also subtle consistency of their properties through the year. These patterns should be discussed in relation to the physiochemical and biological characteristics of the environment, as well as to allochthonous organic matters from non-point pollution sources.
In this study, carbon dioxide concentration and air temperature at different elevations were observed and analyzed in the upper atmosphere of mud flat and reed beds at low tide in Suncheon Bay. The carbon dioxide concentration and air temperature sensors were mounted on the drone, and the carbon dioxide concentration and air temperature by altitude (5 m, 10 m, 20 m, 40 m) at five points in the tidal flat and reed beds were observed in the morning and afternoon. The carbon dioxide concentrations in the upper atmosphere of the tidal flat ranged from 453.0 to 460.2 ppm in the morning and 441.6 to 449.7 ppm in the afternoon. The carbon dioxide concentrations in the upper atmosphere of the reed beds ranged from 448.9 to 452.4 ppm in the morning and 446.0 to 454.4 ppm in the afternoon. The carbon dioxide concentrations in the upper atmosphere of the tidal flat was higher in the morning than in the afternoon, and the carbon dioxide concentration decreased as the altitude increased. The carbon dioxide concentration in the upper atmosphere of the reed beds was similar in the morning and afternoon at all altitudes, and the carbon dioxide concentration decreased as the altitude increased. The correlation coefficient between carbon dioxide concentration and air temperature observed in the tidal flat in the morning was -0.54 ~ -0.77, and the correlation coefficient between carbon dioxide concentration and air temperature observed in the afternoon was 0.56 ~ 0.80. The correlation coefficient between carbon dioxide concentration and temperature observed in the morning in the reed field was low, below 0.3, and the correlation coefficient between carbon dioxide concentration and air temperature observed in the afternoon was 0.35 ~ 0.77. In the upper atmosphere of the tidal flats and reed beds, the linear function was suitable for the change of carbon dioxide concentration as a air temperature, and the coefficient of determination of the estimated linear function was higher in the afternoon than in the morning. Through this study, it was confirmed that the carbon dioxide concentration in the upper atmosphere of the tidal flat and the reed beds was different, and the increase rate of carbon dioxide concentration in the upper atmosphere of the tidal flat and the reed beds was higher in the afternoon than in the morning.
It is well known that atmospheric environments, including both meteorology and air quality, significantly affect public health, such as chronic lung disease and cancer, and respiratory infections. In this study, we have analyzed correlations between the number of daily respiratory outpatients and the atmospheric environments data for about ten years for the city of Busan, South Korea. The respiratory problem patients data have been categorized into two health-vulnerable groups by age over 65(DayPA_O65) and under 20(DayPA_U20), each of which shows relatively higher correlations with air quality and meteorology, respectively. However, time series analysis with factor separation results in that DayPA_O65 and DayPA_U20 show a higher relation with variance components and daily irregular factors of atmospheric concentrations, respectively.
This study estimates the greenhouse gas (GHG) emissions reduction resulting from photovoltaic and wind power technologies using a bottom-up approach for an indirect emission source (scope 2) in South Korea. To estimate GHG reductions from photovoltaic and wind power activities under standard operating conditions, methodologies are derived from the 2006 IPCC guidelines for national GHG inventories and the guidelines for local government greenhouse inventories of Korea published in 2016. Indirect emission factors for electricity are obtained from the 2011 Korea Power Exchange. The total annual GHG reduction from photovoltaic power (23,000 tons CO2eq) and wind power (30,000 tons CO2eq) was estimated to be 53,000 tons CO2eq. The estimation of individual GHGs showed that the largest component is carbon dioxide, accounting for up to 99% of the total GHG. The results of estimation from photovoltaic and wind power were 63.60% and 80.22% of installed capacity, respectively. The annual average GHG reductions from photovoltaic and wind power per year per unit installed capacity (MW) were estimated as 549 tons CO2eq/yr·MW and 647 tons CO2eq/yr·MW, respectively. Finally, the results showed that the level of GHG reduction per year per installed capacity of photovoltaic and wind power is 62% and 42% compared to the CDM project, respectively.
The characteristics of heavy metal ion (Ni2+, Zn2+, and Cr3+) adsorption by zeolite synthesized from Jeju scoria using the fusion and hydrothermal method, were studied. The synthetic zeolite was identified as a Na-A zeolite by X-ray diffraction analysis and scanning electron microscopy images. The equilibrium of heavy metal ion adsorption by synthetic zeolite was reached within 60 min for Ni2+ and Zn2+, and 90 min for Cr3+. The uptake of heavy metal ions increased with increasing pH in the range of pH 3-6 and the uptake decreased in the order of Cr3+ > Zn2+ > Ni2+. For initial heavy metal concentrations of 20-250 mg/L at nonadjusted pH, the adsoption of heavy metal ions was well described by the pseudo second-order kinetic model and was well fitted by the Langmuir isotherm model. The maximum uptake of heavy metal ions obtained from the Langmuir model, decreased in the order of Zn2+ > Ni2+ > Cr3+, differing from the effect of pH on the uptake, which was mainly based on the different pH of the solutions.
This study investigates the characteristics of diurnal, seasonal, and weekly roadside and residential concentrations of PM10 and PM2.5 in Busan, as well as relationship with meteorological phenomenon. Annual mean PM10 and PM2.5 concentrations in Busan were 44.2 ㎍/m3 and 25.3 ㎍/m3, respectively. The PM2.5/PM10 concentration ratio was 0.58. Diurnal variations of PM10 and PM2.5 concentrations in Busan were categorized into three types, depending on the number of peaks and times at which the peaks occurred. Roadside PM10 concentration was highest on Saturday and lowest on Friday. Residential PM10 concentration was highest on Monday and lowest on Friday. Residential PM2.5 concentration was highest on Monday and Tuesday and lowest on Friday. PM10 and PM2.5 concentrations were highest on Asian dust and haze, respectively. The results indicate that understanding the spaciotemporal variation of fine particles could provide insights into establishing a strategy to control urban air quality.
This research investigated the meteorologically relevant characteristics of high PM2.5 episodes in Busan. The number of days when daily mean PM10 concentration exceeded 100 ㎍/m3 and the PM2.5 concentration exceeded 50 ㎍/m3 over the last four years in Busan were 24 and 58, respectively. Haze occurrence frequency was 37.6% in winter, 27.4% in spring, 18.6% in fall, and 16.4% in summer. Asian dust occurrence frequency was 81.8% in spring, 9.1% in fall and winter, and 0% in summer. During summer in Busan, high PM2.5 episode occurred under the following meteorological conditions. 1) Daytime sea breeze. 2) Mist and haze present throuout the day. 3) Anti-cyclone located around the Korean peninsula. 4) Stable layer formed in the lower atmosphere. 5) Air parcel reached Busan by local transport rather than by long-range transport. These results indicate that understanding the meteorological relevance of high PM2.5 episodes could provide insight for establishing a strategy to control urban air quality.
In order to protect the lives and property of citizens, the central and local governments are responding by enacting municipal ordinances and regulations as the frequency of extreme weather conditions due to climate change increases and intensity increases gradually. Accordingly, the basic contents and strategies of domestic and foreign policies to cope with cold and heat waves were reviewed, referring to measures suitable for application to the Daegu metropolitan area. In addition, it is intended to provide a policy alternative to Daegu metropolitan area to minimize damage from extreme weather by identifying the current status, characteristics, and future prospects of extreme weather in Daegu metropolitan area. Since the damage caused by the cold wave in Daegu area is not as great as that of other regions, it is urgent to come up with cold wave measures for the health and transportation sectors, and to come up with measures against the heat wave as the damage caused by the heat wave is the most serious in the country. Also we will identify spatial characteristics so that the districts and counties with high vulnerability to extreme weather can be identified and implemented first, and present civic life-oriented facilities and civic action guidelines to overcome cold and heat waves.
We investigated the oviposition characteristics of Protaetia brevitarsis seulensis, focusing on zone breeding throughout the year in terms of the development and utilization of insect resources. To select Protaetia brevitarsis seulensis individuals laying a large number of eggs, the number of eggs laid for each individual was measured for each individual after emergence as adults from larvae grown at room temperature in five farmhouses. The five study zone included Gongju (Tancheon), Gyeonggi (Himsen), Chungnam (Gyeryong), Taean (Wonbuk), and Siheung (Baekse). The average oviposition tendency during a 12-week period obtained from the five regions was somewhat different; however, there was no remarkable difference in overall tendency. The maximum oviposition in Protaetia brevitarsisseulensis in the five regions occurred between 6 and 7 weeks. Compared toother regions, the average cumulative number of eggs laid during the 12-week period was higher (40%–60%) in Gongju (Tancheon) and Gyeonggi (Himsen). These results indicate that in two regions, zone breeding is selected as a system for increasing the demand for insects.
The present study was investigated the oviposition characteristics of Protaetia brevitarsis seulensis with a focus on winter larvae to improve the utilization of insect resources. The average oviposition tendency and average cumulative number of eggs laid during a 7-week period were measured in adults emerging from larvae that had hibernated for 4 months in five farmhouses. The study covered five zones: Gimje, Jangsu, Wanju, Iksan and Yeoju. The average oviposition tendency over a 7-week period showed increased egg laying between 2 to 3 weeks and 5 to 6 weeks. Overall, it was found that the average cumulative number of eggs laid during the 7-week period was initially low and increased proportionally with time. Our results suggest that using adults that have emerged from hibernated larvae is effective in increasing the oviposition rate and utilization of the insect.