The object of this research is to find out the psychological change of observer according to the index of Greenness in the space of scenic planting, and research is proceeded with total 112, male students 69, and female students 43. The index of Greenness experimented with 5 pictures, 20%, 40%, 60%, 80%, and 100%, and carried out the test after selecting each picture of the index of Greenness for landscaping in Konkuk University Global Campus. To find out the mood condition of testee, POMS and SD was used for analyzing. As a result of TMD among POMS, male and female students are shown as each 60% > 100% > 40% > 20% > 80% in order. As a result of SD, male and female students are shown as 80% > 20% > 40% > 60% > 100% in order and the index of Greenness 100% makes people feel fluent and natural about plants but closed and constrained than the index of Greenness 80%.
Although most natural disaster related studies conducted in Korea recently have been related to typhoons or severe rainstorms, the occurrence frequency of disasters due to windstorms or rainstorms is also high. To reduce the strong wind damage caused by strong windstorms due to climate change, basic studies of strong winds are necessary. Therefore, in this study, the types and representative cases of windstorms that were observed to have been higher than 14 m/s, which is the criterion for strong-wind warnings from the Korea Meteorological Administration, were selected from among those windstorm cases that occurred on the Korean Peninsula for 10 years to conduct a statistical analysis of them and determine their synoptic meteorological characteristics. The cases of windstorms occurring on the Korean Peninsula were divided into six weather patterns according to the locations of the anticyclones/cyclones. Among these types, the SH type, which occurs when Siberian Highs expand into the Korean Peninsula, showed the highest occurrence frequency, accounting for at least the majority of the entire occurrence frequency of windstorms together with that of the EC type, which occurs when cyclones develop on the East Sea, and there was no clear yearly trend of the occurrence frequencies of windstorms. The monthly occurrence frequencies of windstorms were formed mainly by typhoons in the summer and the Siberian Highs in the winter, and the months with the highest windstorm occurrence frequencies were December and January, in which mainly the SH and EC type windstorms occurred. March showed the next highest occurrence frequency with10 times, and SH windstorms occurred the most frequently in March, followed by the CC, SC, and EC types of windstorms, in order of precedence. Therefore, attention to these types of windstorms is required. Countermeasures against storm and flood damage in Korea targeting the summer should be re-reviewed together with pre-disaster prevention plans, because cases of storm and flood damage due to windstorms occur more frequently than those due to typhoons, and they occur throughout the year.
A rapid and simple method for the quantitative determination of volatile fatty acids (VFAs; propionic acid, n-butyric acid, i-valeric acid and n-valeric acid) and indoles (phenol, p-cresol, 4-ethyl phenol, indole and skatole) in pig slurry and dog excrement using solid-phase micro-extraction (SPME) coupled to gas chromatography was evaluated. 50/30 ㎛ DVB/CAR/PDMS (Divinylbenzene/Carboxen/Polydimethylsiloxane) fiber was used to extract the target compounds in aqueous media. Sample amount and adsorption time was standardized for the routine analysis. Detection limits were from 0.11 to 0.15 ㎍/L for VFAs and from 0.12 to 0.28 ㎍/L for indoles and the correlations observed (R2) were 0.975~1.000. This method was applied to the pig slurry, fertilizer, compost and dog excrement. In nearly all cases, the indoles were detected in concentrations of higher than their limits of detection (DOLs). But the VFAs in swine manure were below their DOLs.
An eco-friendly integrated multi-trophic aquaculture (IMTA) farming technique was developed with the goal of resolving eutrophication by excess feed and feces as fish-farming by-products. A variety of seaweed species were tried to remove inorganic nutrients produced by fish farming. However, there have been few trials to use Sargassum fulvellum in an IMTA system, a species with a relatively wide distribution across regions with various habitat conditions, great nutrient removal efficiency and importance for human food source and industrial purposes. In this regard, our study tried to examine feasibility of using S. fulvellum in an IMTA system by analyzing growth characteristics of the species in an IMTA system comprising of rockfish (Sebastes shlegeli), sea cucumber (Stichopus japonocus) and the tried S. fulvellum (October 2011 – November 2012). We also monitored environment conditions around the system including current speed, water temperature and inorganic nutrient level as they may affect growth of S. fulvellum.
S. fulvellum in the IMTA system, which were 15.72±5.67 mm long at the start of the experiment in October 2011, grew to a maximum of 1093±271.13 mm by May 2012. In September, seaweed growth was reduced to a minimum of 280±70.43 mm in length. Then, S. fulvellum began to grow again reaching 325±196.19 mm by November 2012. Wet weight of the seaweed was 4.01±1.89 g at the start of the experiment and reached a maximum of 109.26±34.23 g in May. The weight gradually declined to a low of 15.12±8.40 g in September 2012. Weight began to increase once more, rising to 39.27±21.69 g by November. During the experiment, the average velocity at the surface and the bottom was 6.5 cm/s and 3.4 cm/s, respectively. The water temperature ranged 5.0-23.5℃, which was considered suitable for growing S. fulvellum. Results of the study indicated no significant differences in inorganic nutrients between pre- and post-IMTA installation. It was thus concluded that S. fulvellum can be a suitable seaweed species to be used in an IMTA system.
This study is carried out in order to bridge the gap to understand the relationships between South Asian and East Asian monsoon systems by comparing the summer (June-September) precipitation of Nepal and South Korea. Summer monsoon precipitation data from Nepal and South Korea during 30 years (1981-2010) are used in this research to investigate the association. NCEP/NCAR reanalysis data are also used to see the nature of large scale phenomena. Statistical applications are used to analyze these data. The analyzed results show that summer monsoon precipitation is higher over Nepal (1513.98 ± 159.29 mm y-1) than that of South Korea (907.80 ± 204.71 mm y-1) and the wettest period in both the countries is July. However, the coefficient of variation shows that amplitude of interannual variation of summer monsoon over South Korea (22.55%) is larger in comparison to that of Nepal (10.52%). Summer monsoon precipitation of Nepal is found to be significantly correlated to that of South Korea with a correlation coefficient of 0.52 (99% confidence level). Large-scale circulations are studied to further investigate the relationship between the two countries. wind and specific humidity at 850 hPa show a strong westerly from Arabian Sea to BOB and from BOB, wind moves towards Nepal in a northwestward direction during the positive rainfall years. In case of East Asia, strong northward displacement of wind can be observed from Pacific to South Korea and strong anticyclone over the northwestern Pacific Ocean. However, during the negative rainfall years, in the South Asian region we can find weak westerly from the Arabian Sea to BOB, wind is blowing in a southerly direction from Nepal and Bangladesh to BOB.
The time variations in relative humidity observed at the Gangjeong (Goryeong) Reservoir in the Nakdong River over a one-year period (September 2012–August 2013) were analyzed with the Bowen ratio. The thermal vertical scale of the reservoir was also evaluated following Yamamoto’s method. The study’s results showed that the relative humidity at the reservoir was higher than that of the Daegu Meteorological Observatory (inland) all year round. The difference was slightly larger at nighttime (17–20 %) than at daytime (13–15 %) in all seasons except summer. The quantitative order of latent heat flux was summer, spring, autumn, and winter. This finding signifies that the thermal vertical scale of the reservoir corresponds to that of a shallow lake. The Bowen ratio was smallest at midday of the summer season. In other words, the net radiation energy was converted more as latent heat flux than sensible heat flux during a higher temperature period.
Sediment microbial fuel cell (SMFC), equipped with Zn, Al, Cu, Fe or graphite felt (GF) anode and marine sediment, was performed. Graphite felt was used as a common cathode. SMFC was single chambered and did not use any redox mediator. The aim of this work was to find efficient anodic material. Oxidation reduction potential (ORP), cell voltage, current density, power density, pH and chemical oxygen demand (COD) were measured for SMFC’s performance.. The order of maximum power density was 913 mWm-2 for Zn, 646 mWm-2 for Fe, 387.8 mWm-2 for Cu, 266 mWm-2 for Al, and 127 mWm-2 for graphite felt (GF). The current density over voltage was found to be strongly correlated with metal electrodes, but the graphite felt electrode, in which relatively weaker electricity was observed because of its bio-oriented mechanism. Metal corrosion reactions and/or a complicated microbial electron transfer mechanism acting around the anodic compartment may facilitate to generate electricity. We presume that more sophisticated selection of anodic material can lead to better performance in SMFC.
Water quality of the Koejong-reservoir was estimated by using the ecological model to evaluate the effects of industrial sewage discharge. State variables consist of POC, DOC, phytoplankton, DIP, DIN, DO and COD. Initial conditions for the compartment are applied to the model based on the observed results. The reproducibility was found to be satisfactory with the relative error ranging between the calculated value and the observed value. Water quality simulation was conducted by applying additional industrial sewage discharge into the Koejong-reservoir. The concentrations of COD, Chl.a, DIP and COD showed fluctuations of a narrow range. The increment percentages of Chl.a, COD and DIP were 26.6%, 20.2% and 18.2%, respectively. In the case of DO, the concentration decreased 4.8%.
It is known that mackerel and pork belly release a strong odor in the process of roasting. We evaluated a dilution factor of odor arising during roasting mackerel or pork belly and the relative odor strength using several cooking tools and analyzed compounds causing odors with gas chromatograph / mass detector.
Roasting pans used were grill with lid, electric grill without lid and general roasting pan, and a grill with lid can attach the activated carbon charcoal deodorant at the inside of lid. And all electric grills have a drip tray under the heater. We investigated characteristics of odor emission depending on the presence of water and deodorants in these cooking tools. Study has shown that roasting mackerel produces approximately 36 time more odors than roasting pork belly, and the reduced odor emission when roast with water. And it shows the reduced deodorant effect when cooked with water after attaching activated carbon charcoal in the cooking pan. Major odor causing compounds arising when cooking mackerel and pork belly were aldehydes with high boiling point such as octyl aldehyde with a low odor threshold value.