In this study, the concentrations of polycyclic aromatic hydrocarbons (PAHs) were investigated in meat process food and for cooking methods (pan-frying and charcoal fire). The methodology involved liquid-liquid extraction, silica gel cartridge clean-up and determination by gas chromatography/mass spectrometry (GC/MS). The recovery of 17 PAHs spiked into these samples ranged from 66.6 % to 98.0% and the coefficient of variation was less than 10%, but that of dibenz(a,h)anthracene was 16.39%. The mean concentration of total PAHs in processed samples was ND∼7.2 ng/g, whereas that pan-fried and charcoal-fired samples were ND∼22.1 ng/g and, 12.7∼367.8 ng/g, respectively. Therefore, the concentrations of total PAHs in cooked samples were higher than in original samples and charcoal-fired samples had the highest total PAH levels.
In response to the water shortage problem, continued attempts are being made to secure consistent and reliable water sources. Among various solutions to this problem, wastewater effluent is an easy way to secure the necessary supply, since its annual output is consistent. Furthermore, wastewater effluent has the advantage of being able to serve various purposes, such as cleaning, sprinkling, landscaping, river management, irrigation, and industrial applications. Therefore, this study presents the possible use of reclaimed industrial wastewater treated with Birm filters and a UF membrane, along with an analysis on membrane fouling. The preprocessing stage, part of the reclamation process, used Birm filters to minimize membrane fouling. Since this study did not consider heavy metal levels in the treated water, the analyses did not include the criterion for irrigation water quality. However, the wastewater reclaimed by using Birm filters and a UF membrane met every other requirement for reclaimed water quality standards. This indicated that the treated water could be used for cleaning, channel flow for maintenance, recreational purposes, and industrial applications. The analysis on the fouling of the Birm filter and UF membrane required the study of the composition and recovery rate of the membrane. According to SEM and EDX analyses of the UF membrane, carbon and oxygen ion composition amounted to approximately 57%, whereas inorganic matter was not detected. Furthermore, the difference in the recovery rates of the distressed membrane between acidic and alkaline cleaning was more than ~78%, which indicated that organic rather than inorganic matter contributed to membrane fouling.
To analyze the cooling effect of urban green areas, we conducted micrometeorological measurements in these areas and their surroundings in Seoul, Korea. From the average hourly temperature measurements through each month for the last two years (March 2013 to February 2015), we found that the maximum temperature difference between urban and green areas was about 2.9℃ at 16:00 LST in summer, and the minimum was about 1.7℃ at 22:00 LST in winter. In summer, the temperature difference was the largest during the day, rather than at night, due mainly to shading by the tree canopy. The specific humidity difference between the two areas was about 1.5 g kg-1 in summer, and this decreased in the winter. The specific humidity difference between urban and green areas in summer is relatively large during the day, due to the higher evapotranspiration level of biologically active plants.
PSf/D2EHPA/CNT beads were prepared by immobilizing di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and carbon nanotubes (CNT) on polysulfone (PSf) and used to remove Cu(II) from aqueous solutions. Optimum pH was in the range of 4 to 6. The removal kinetic of Cu(II) by the prepared PSf/D2EHPA/CNT beads was mainly governed by internal diffusion, and the diffusion coefficient of Cu(II) by PSf/D2EHPA/CNT beads was found to be 2.19×10-4∼2.64×10-4 cm2/s. The Langmuir isotherm model predicted the experimented data well. The maximum removal capacity of Cu(II) obtained from this isotherm was 7.32 mg/g. Calculated thermodynamic parameters such as ΔGo, ΔHo and ΔSo showed that the adsorption of Cu(II) ions onto PSf/D2EHPA/CNT beads was feasible, spontaneous and endothermic at 293–323 K.
The efficiencies of Gang-Byeon sewage treatment facilities, which are based on GPS-X modelling, were analysed and used to design recycle water treatment processes. The effluent of an aeration tank contained total kjeldahl nitrogen (TKN) of 1.8 mg/L with both C-1 and C-2 conditions, confirming that most ammonia nitrogen (NH3 +-N) was converted to nitrate nitrogen (NO3 --N). The concentrations of NH3 +-N and NO3 --N were found to be 222.5 and 227.2 mg/L, respectively, with C-1 conditions and 212.2 and 80.4 mg/L with C-2 conditions. Although C-2 conditions with higher organic matter yielded a slightly higher nitrogen removal efficiency, sufficient denitrification was not observed to meet the discharge standards. For the total nitrogen (T-N) removal efficiency, the final effluent concentrations of T-N were 293.8 mg/L with biochemical oxygen demand (BOD) of 2,500 mg/L, being about 1.5 times lower than that (445.3 mg/L) with BOD of 2,000 mg/L. Therefore, an external carbon source to increase the C/N ratio was required to get sufficient denitrification. During the winter period with temperature less than 10 , the denitrification efficiency was dropped rapidly even with a high TKN concentration (1,500 mg/L). This indicates that unit reactors (anoxic/aerobic tanks) for winter need to be installed to increase the hydraulic retention time. Thus, to enhance nitrification and denitrification efficiencies, flexible operations with seasons are recommended for nitrification/anoxic/denitrification tanks.
This study was performed to analyze the effects of a water circulation green area plan on non-point source pollution in Gimhae South Korea. A quantitative analysis of Arc-GIS data was conducted by applying a watershed model based on Fortran to investigate the changes to direct runoff and pollution load. Results showed that prior to the implementation of the water circulation green area plan in Gimhae, direct runoff was 444.05 m3/year, total biological oxygen demand (BOD) pollution load was 21,696 kg/year, and total phosphorus (TP) pollution load was 1,743 kg/year. Implementation of the development plan was found to reduce direct runoff by 2.27%, BOD pollution load by 1.16% and TP pollution load by 0.19% annually. The reduction in direct runoff and non-point source pollution were attributed to improvements in the design of impermeable layers within the city.
Jeju Island relies on subterranean water for over 98% of its water resources, and it is therefore necessary to continue to perform studies on drought due to climate changes. In this study, the representative standardized precipitation index (SPI) is classified by various criteria, and the spatial characteristics and applicability of drought in Jeju Island are evaluated from the results. As the result of calculating SPI of 4 weather stations (SPI 3, 6, 9, 12), SPI 12 was found to be relatively simple compared to SPI 6. Also, it was verified that the fluctuation of SPI was greater fot short-term data, and that long-term data was relatively more useful for judging extreme drought. Cluster analysis was performed using the K-means technique, with two variables extracted as the result of factor analysis, and the clustering was terminated with seven-time repeated calculations, and eventually two clusters were formed.
As a result of dividing typhoon that affected Korean Peninsular between 1999 and 2012 into 7 types of path and entering forecast field and analysis field of RDAPS, until 36 hours from the time of forecast, it is reliable to use the forecast field of RDAPS to predict typhoon and for each typhoon path, the difference between the forecast and the analysis shows normal distribution, which is usable for weather forecast until the 36th hour. In the 48th hour from the time of forecast, the difference of result depending on each typhoon path increased, which was analyzed to be due to errors in the forecast. It was expected that relatively reasonable results should be shown if the 36th hour forecast is used to predict the strength and distribution of strong wind. As a result of using Korean RAM and observing the difference of the maximum damage, reliability was secured up to 36 hours and after 48hours, it was expected that the fluctuation of results may become more severe.
This research was intended to provide a method to improve competitiveness, based on the integration of basic municipalities by assessing changes in their population and local industry Municipalities were integrated based on the addressing system 市(Shi), 町(Chome), 村(Village) of Japan. As a result, an actual increase of the population could not be seen in the new municipalities formed by the integration of the basic municipalities. It is also found that the shipping volumes, number of companies, and the number of people employed by local industry, attracted by such municipalities, has steadily decreased. However, even though the proportion of industrysharing in the local municipalities is not significant, it was found that the number of tourists has increased. Therefore, it is concluded that the strengthening of the connectivity between local industry and the tourism industry can be one of the principal methods to strengthen the competitiveness of these municipalities. In addition, it has been found that scientific research from a variety of perspectives and verification of data related to the effectiveness of integration of local municipalities is necessary.
To understand the characteristics of vanadium leaching from soils formed by the weathering of basalts, paleo soil at Gosan, Jeju Island, Korea, and several present-day soils from neighboring areas were collected. Leaching experiments were carried out by two approaches: 1) batch experiments under various geochemical conditions (redox potential (Eh) and pH) and 2) continuous leaching experiments under conditions similar to those of natural environments. From the batch experiments, leached vanadium concentrations were highest under alkaline (NaOH) conditions, with a maximum value of 2,870 μg/L, and were meaningful (maximum value, 114 μg/L) under oxidizing (H2O2) conditions, whereas concentrations under other conditions (acidic-HCl, neutral-NaHCO3, and reducing-Na2S2O3) were negligible. This indicated that the geochemical conditions, in which soil-water reactions occurred to form groundwater with high vanadium concentrations, were under alkaline-oxidizing conditions. From the continuous leaching experiments, the pH and leached vanadium concentrations of the solution were in the ranges of 5.45 5.58 and 6 9 μg/L, respectively, under CO2 supersaturation conditions for the first 15 days, whereas values under O2 aeration conditions after the next 15 days increased to 8.48 8.62 and 9.7 12.2 μg/L, respectively. Vanadium concentrations from the latter continuous leaching experiments were similar to the average concentration of groundwater in Jeju Island (11.2 μg/L). Furthermore leached vanadium concentrations in continuous leaching experiments were highly correlated with pH and Al, Cr, Fe, Mn and Zn concentrations. The results of this study showed that 1) alkaline-oxidizing conditions of water-rock (soil) interactions were essential to form vanadium-rich groundwater and 2) volcanic soils can be a potential source of vanadium in Jeju Island groundwater.
Concentrations of hydrogen sulfide in ambient air have been measured from January 2014 to June 2016 in a coastal area near the Ulsan National Industrial Complex. The measurement sites were 1 km, 2.6 km, 5.6 km, and 20 km away from a kraft pulp mill, which is located at the most southern edge of the complex. Concentrations above 0.4 ppb were monitored every 5 min and the highest concentration of the day was determined. From a total of 775 measurement days, hydrogen sulfide concentrations > 20 ppb were recorded on 36 and 38 days at the measurement site closest to the mill and the residential area 2.6 km away from the mill, respectively. At the site farthest from the mill, the concentrations were always 20 ppb lower than the malodor regulation for the residential area but sometimes higher than the odor recognition threshold for hydrogen sulfide. Although several emission sources of hydrogen sulfide have been published in the Pollutant Release and Transfer Register of Korea, the kraft pulp mill is considered to be the biggest contributor of atmospheric hydrogen sulfide in the southern coastal area of Ulsan.
The aim of this study was to evaluate the occurrence of vanadium in Jeju Island groundwater, focusing on the spatio-temporal patterns and geochemical controlling factors of vanadium. For this, we collected two sets of groundwater data: 1) concentrations of major constituents of 2,595 groundwater samples between 2008 and 2014 and 2) 258 groundwater samples between December 2006 and June 2008. The concentrations of groundwater vanadium were in the range of 0.2 71.0 μg/L (average, 12.0 μg/L) and showed local enrichments without temporal/seasonal variation. This indicated that vanadium distribution was controlled by 1) the geochemical/mineralogical composition and dissolution processes of original materials (i.e., volcanic rock) and 2) the flow and chemical properties of groundwater. Vanadium concentration was significantly positively correlated with that of major ions (Cl-, Na+, and K+) and trace metals (As, Cr, and Al), and with pH, but was negatively correlated with NO3-N concentration. The high concentrations of vanadium (>15 μg/L) occurred in typically alkaline groundwater with high pH ( 8.0), indicating that a higher degree of water-rock interaction resulted in vanadium enrichment. Thus, higher concentrations of vanadium occurred in groundwater of Na-Ca-HCO3, Na-Mg-HCO3 and Na-HCO3 types and were remarkably lower in groundwater of Na-Ca-NO3(Cl) type that represented the influences from anthropogenic pollution.
In this study, to provide basic information for design of a large-scale recycling system for fishery by-products, the food nutrient components, fertilizer components, and microbial composition of fertilizers and feed which were made of fishery by-products were analyzed before and after fermentation. The results of the analysis of the edible portion of fishery by-products indicated that calories per 100 g of crustaceans were the highest followed by those of fish and brown algae in order of precedence with values as follows; Korean Krill 94 Kcal, Portunus trituberculatus 65 Kcal, Lophiomus setigerus 58 Kcal, and Undaria pinnatifida 16 Kcal. As for changes in amino acids per 100 g of fishery by-products between before and after fermentation, calories per 100 g of P. trituberculatus decreased by 74.7% from 15.7 g to 4.0 g, that of L. setigerus decreased by 61.1% from 11.9 g to 4.6 g, that of Korean Krill decreased by 53.5% from 11.6 g to 5.4 g, and that of U. pinnatifida decreased by 49.4% from 1.7 g to 0.9 g. Among amino acids, those contained in fishery by-product fertilizers (liquid fertilizer) in large amounts were shown to be Glutaminic acid, Aspartic acid, Glycine, Lysin, and Leucine. The lipid content of Korean Krill decreased by 11.9% from 3.2 g to 2.8 g, that of L. setigerus increased by 2.0 times from 1.1 g to 2.2 g, that of P. trituberculatus increased by 4.5 times from 0.4 g to 1.7 g, and that of U. pinnatifida increased by 9.4 times from 0.2 g to 1.9 g. The ash (mineral) content of P. trituberculatus decreased by 82.5% from 26.2 g to 4.6 g, that of U. pinnatifida increased by 27.6% from 3.3 g to 4.2 g, that of Korean Krill increased by 21.9% from 3.1 g to 3.8 g, and that of L. setigerus increased by 88.7% from 1.2 g to 2.2 g. The microbial composition of liquid fertilizer using recycled fishery by-products was shown to be Bacteria, Actinomycetes, Fungi, Yeast, and Lactobacillus sp.
The purpose of this study was to investigate the effects of fertilizer application on the content of functional materials, such as fatty acids and organic acids in perilla leaves. (1) As compared to the controlled with Ammonium sulfate fertilizer, the yield of Perilla frutescens leaves increased by 7.3% and 12.8% of biomass at 2000 and 1000 times liquid respectively, but decreased by 7.6% at 500 times. The lipid and protein contents of perilla leaves were higher than those of Portunus trituberculatus liquid at 1000 times. The average contents of minerals (mg/100g) were as follows; K (638.4) > Ca (561.6) > P (145.4) > Mg (133.5) > Fe (36.2) > Zn (1.9) > Mn (1.6) > Na (1.4 mg). However, the correlation between the controlled with P. trituberculatus liquid was relatively low. (2) The fat-soluble vitamin E content of P. frutescens leaves was 3.4, 3.9, 3.3, and 3.9 mg in the controlled with liquid by 500, and 1000, 2000 times respectively; Vitamin A contents were 6.4, 8.9, 10.9, and 8.5 mg respectively, which was more than twice as much as the corresponding vitamin E content. The water soluble vitamin C contents were 177.9, 172.6, 195.2, and 163.5 mg respectively. (3) Amino acid contents of P. frutescens leaves in 100 g of fresh weight were 3821.7 mg in the controlled with Ammonium sulfate fertilizer and 3918.8, 4054.0, and 4005.4 mg in the controlled with P. trituberculatus liquid at 2,000, 1000, 500 times respectively. Amino acid contents of each controlled group with P. trituberculatus liquid above were as small as 2.5~6.1%, and these contents of amino acid were as follows: Glutaminic acid > Aspartic acid > Leucine > Arginine > Phenylalanine. In further study, it is necessary to develop an effective microorganism and a variety of amino acid fertilizer to supplement the study on new manufacturing.
From December 2014 to November 2015, an automatic weather system (AWS) was installed over a wide road of Daegu to continuously measure meteorological factors and surface temperature. We investigated the effective operating period of the clean-road system using the daily maximum and minimum air and asphalt surface temperatures, with the aim of creating an optimum thermal environment. The clean-road system was installed over a part of the broad way of Dalgubul(Dalgubul-Daero) by Daegu Metropolitan City in 2011. Until now, the clean-road system has been operated from the middle of April to the end of September. We assumed that it was desirable that the clean-road system could be operated when the discomfort index was above 55. In conformity with the conditions, we concluded that the optimum operation period of the clean-road system is from the end of March to about the middle of October.