In this study, the discharge loads of non-point pollution sources were analyzed using a Hydrologic Simulation Program-Fortran (HSPF) model for 46 sub-watersheds in order to guide the management plan for water and streams passing through the city. The results using HSPF showed good applicability in comparison to point measurements, which were based on BOD, TP, and TN. The mean value of the BOD loads was 4.08 kg/km2 per day, and the highest level of BOD was 17.75 kg/km2 per day at Namri. Three potential areas of high priority for the installment of constructed wetlands were selected in order to reduce non-point pollution sources based on BOD loads and on environmental and economic conditions. The results for these scenarios indicated a maximum rate of reduction in BOD of 39.12% within the proposed constructed wetlands.
The purpose of this study was to investigate the bioactivity of extracts from the seeds of Gardenia jasminoides Ellis fructus (GJE) found in Namhae, Korea. Extraction was performed using three solvents, 70% methanol, Distilled Water (DW), and Ethyl Acetate (EA). We determined the total phenol and phytic acid contents of the extracts to evaluate their nitrogen oxide scavenging activity, antioxidant activity, reducing power, and lipid peroxidation inhibition ability. The phytic acid content of GJE was found to be 1.157 mg PAE (Phytic Acid Equivalent) /g DW. The yields of the three extraction processes were as follows: DW, 36.61%; 70% methanol, 30.10%; and EA, 20.40%. The physiological activities of the extract solvents increased significantly with increasing concentrations (0.2, 0.4, and 0.6 mg/mL) (p<0.05), but were lower than those of ascorbic acid, BHA, and trolox. Total phenol content was the highest in the 70% methanol extract, followed by DW and EA extracts. Further, nitrogen oxide scavenging activity and antioxidant activity were the highest for the 70% methanol extract followed by DW and EA extracts. Based on these results, the bioactivities of the 70% methanol and DW extracts of GJ seeds were excellent. These extracts can be used as natural antioxidants
The purpose of this study was to measure the bioactivity and antioxidant activity of peel from Gardenia jasminoides fructus Ellis (GJE) in Namhae, Korea, following some established methods. CM (Chloroform:Methanol, 2:1, v/v), 70% ethanol, and n-butanol extracts were collected. Flavonoid content and value as a functional food ingredient of GJE peel was investigated through assessing antioxidant [DPPH (1,1'-diphenyl-2-picrylhydrazyl), ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid)], and hydroxyl radical scavenging activities; superoxide dismutase like ability; ferrous ion-chelating capacity; and tannin content by solvent extraction. Solvent extract antioxidant activities significantly increased (p<0.05) at increasing concentrations (0.2, 0.4, 0.6 mg/mL). GJE peel extracts were less active than the positive control [ascorbic acid, BHA (butylated hydroxyanisole), and EDTA (ethylenediaminetetraacetic acid disodium salt dihydrate)]. Based on the results of this study, GJE peel could be used as a natural antioxidant source due to its high antioxidant activity and bioactive compound content.
Phytoplankton populations were examined at three sites in Lake Cheongpyeong, South Korea from March 2008 to December 2016, including measurement of phytoplankton communities and their dominant species, abundance and environmental factors. The annual average ranges of water temperature, dissolved oxygen and conductivity were 15.2-18.8℃ , 10.3-12.2 mg/L, 86-140 μS/cm, respectively, with similar values at all studied sites. The highest phytoplankton cell density was observed in spring and fall, and it subsequently decreased rapidly during heavy rainfall. Diatoms were dominant in spring (mainly Stephanodiscus hantzschii, Asterionella formosa) and fall (mainly Aulacoseira granulata), while greenalgae and cyanobacteria had high appearance in early-summer and summer, respectively, indicating that water temperature is the most important factor influencing their growth. Stephanodiscus hantzschii and Asterionella formosa frequently occurred at low water temperature (4.5-15.0℃ and 5.4-21.6℃ , respectively) while Aulacoseira granulata and Anabaena spp. were favored by high water temperature (8.6-28.4 and 14.9-26.2℃ , respectively) and phosphorus. Additionally, Fragilaria crotonensis occurred at low nutrient conditions. Rhodomonas spp. frequently appeared year-round.
This study was conducted to determine correlations and similarity between the ozone and PM10 data of 19 air quality monitoring stations in Busan from 2013 to 2016, using correlation and cluster analyses. Ozone concentrations ranged from 0.0278±0.0148 ppm at Gwangbok to 0.0378±0.017 ppm at Taejongdae and were high in suburban areas, such as Yongsuri and Gijang, as well as in coastal areas, such as Jaw, Gwangan, Taejongdae and Noksan. PM10 concentrations ranged from 37.2±25.0 ug/m3 at Gijang to 58.3±32.2 ug/m3 at and Jangrim. PM10 concentrations were high in the west, exceeding the annual ambient air quality standard of 50 ug/m3. Positive correlations were observed for ozone at most stations, ranging from 0.61 between Taejongdae and Sujeong to 0.92 between Bugok and Myeongjang. The correlation coefficients of PM10 between stations ranged from 0.62 between Jangrim and Jaw to 0.9 between Gwangbok and Sujeong. Yeonsan, Daeyeon, and Myeongjang were highly correlated with other stations, so they needed to be reviewed for redundancy. Ozone monitoring stations were initially divided into two sections, north-western areas and suburban-coastal areas. The suburban-coastal areas were subsequently divided into three sections. PM10 monitoring stations were initially divided into western and remaining areas, and then the remaining areas were subsequently divided into three sections.
For the development of flow duration curves for the management of 41 Total Maximum Daily Load (TMDL) units of the Nakdong River basin, first, an equation for estimating daily flow rates as well as the level of correlation (correlation and determination coefficients) was extrapolated through regression analysis of discrete (Ministry of Environment) and continuous (Ministry of Land, Infrastructure and Transportation) measurement data. The equation derived from the analysis was used to estimate daily flow rates in order to develop flow duration curves for each TMDL unit. By using the equation, the annual flow duration curves and flow curves, for the entire period and for each TMDL unit of the basin, were developed to be demonstrated in this research. Standard flow rates (abundant-, ordinary-, low- and drought flows) for major flow duration periods were calculated based on the annual flow duration curves. Then, the flow rates, based on percentile ranks of exceedance probabilities (5, 25, 50, 75, and 95%), were calculated according to the flow duration curves for the entire period and are suggested in this research. These results can be used for feasibility assessment of the set values of primary and secondary standard flow rates for each river system, which are derived from complicated models. In addition, they will also be useful for the process of implementing TMDL management, including evaluation of the target level of water purity based on load duration curves.
Amendment of multi-binders was employed for the immobilization of metal(loid)s in field-contaminated soils to reduce the leaching potential. The effect of different types of multi-binders (lime/diammonium phosphate, diammonium phosphate/ladle slag and lime/ladle slag) on the solidification/ stabilization of metal(loid)s (Pb, Zn, Cu and As) from the smelter soil and mine tailing soil were investigated. The amended soils were evaluated by measuring Toxicity Characterization Leaching Procedure (TCLP) leaching concentration of metal(loid)s. The results show that the leaching concentration of metal(loid)s decreased with the immobilization using multi-binders. In terms of TCLP extraction, the mixed binder was effective in the order of lime/ladle slag > diammonium phosphate/ladle slag > lime/diammonium phosphate. When the mixed binder amendment (0.15 g lime+0.15 g ladle slag for 1g smelter soil and 0.05 g lime+0.1 g ladle slag for 1 g mine tailing soil, respectively) was used, the leaching concentration of metal(loid)s decreased by 90%. However, As leaching concentration increased with diammonium phosphate/lime and diammonium phosphate/ladle slag amendment competitive anion exchange between arsenic ion and phosphate ion from diammonium phosphate. The Standard, Measurements and Testing programme (SM&T) analysis indicated that fraction 1 (F1, exchangeable fraction) decreased, while fraction 4 (F4, residual fraction) increased. The increased immobilization efficiency was attributed to the increase in the F4 of the SM&T extraction. From this work, it was possible to suggest that both arsenic and heavy metals can be simultaneously immobilized by the amendment of multi-binder such as lime/ladle slag.
In this study, the effect of probiotic supplementation on growth performance, blood metabolites, and meat quality of Hanwoo steer was investigated. A total of 32 Hanwoo steers (15-17 months, average body weight 462±37.9 kg) were randomly allotted to 4 dietary treatments (0, 0.5, 1.0, and 1.5% mixed probiotics), with four Hanwoo steers per pen (two replicates per treatments), and reared for 12 months. There were no differences among treatments in growth performance of Hanwoo steer (P>0.05); however, feed intake decreased linearly with increasing levels of mixed probiotics. Growth hormone and Blood Urea Nitrogen (BUN) levels responded linearly with increasing levels of dietary mixed probiotics (P<0.05), but not insulin and blood glucose did not. In particular, total cholesterol was significantly lower for the 1% mixed probiotic treatment in comparison with that of the other treatments (P<0.05). The pH, Thiobarbituric Acid Reactive Substances (TBARS), cooking loss, and meat color were influenced by increasing levels of mixed probiotics (P<0.05), but the carcass characteristics and shear force were not. Regarding sensory evaluation, the addition of mixed probiotics resulted in significant difference in meat color, tenderness, aroma, off-flavor, juiciness, and marbling score, but not in overall acceptability. In addition, fatty acid profiles indicated no differences between control and mixed probiotic treatments. In conclusion, mixed probiotic treatment at 1% levels can enhance consumer preferences possibly by reducing cholesterol and TBARS.
The purpose of this study is to establish common indicators that constitute a "low-carbon green city" and determine their priorities from the perspective of Incheon Metropolitan City with a view to help develop its climate change strategy strategic city. Several major cities, domestic and overseas, were benchmarked to come up with preliminary indicators consisting of six areas, twenty two planning factors, and 74 indicators. In order to evaluate the validity and relevance of preliminary indicators, expert FGI (Focus Group Interview) was conducted that changed the numbers of final indicators to six areas, twenty two planning factors, and 82 indicators. Finally, AHP (Analytic Hierarchy Process) was conducted to assign relative importance (i.e. weights) to each indicator. Through the layering process of AHP, the upper category of "field" and lower category of "planning factors" were set up as policy prerequisites for constructing a low-carbon green city (6 fields, 22 planning factors). The AHP results for the first level (fields), green city space was ranked first, followed by energy and resource circulation, green traffic, ecological preservation, green logistics, and governance. Among all planning factors, land use, energy efficiency, traffic system improvement, location planning, securing of ecological area, efficiency of logistics, and cooperative organization showed the highest priorities.
De-icing salts applied to roads during winter enable safe driving conditions. However, these salts are eventually displaced to roadside areas at which they can negatively impact soil, vegetation, and water resources. This purpose of this study is to determine the relationship between foliar damage ratio (NY = 0-25%, SY = 26-50%, CY = 51-75%) on roadside trees (Ginko biloba) and seasonal impact of de-icing salts on soil and vegetation. Thirty roadside trees were selected at 8 m intervals between the Konkuk and Judeok intersections in Chung-ju city. The results reveal that seasonal soil acidity is relatively alkaline for foliar damage ratio of Ginko biloba was CY compared to NY. Also, electronic conductivity of each seasonal sampling was recorded as high in winter and spring, whereas the opposite trend is observed in summer. Various plants species were identified in abundance under roadside trees within NY roadside sections. These same species were observed in reduced numbers within CY sections. Strong negative correlations were identified between foliar damage ratio on roadside trees and vegetation. This relationship may be a method to use in predicting the accumulation of de-icing salt and visible injuries on roadside trees.