Recently IPCC (International Panel on Climate Change, 2007) pointed out that global warming is a certain ongoing process on the earth, due to which water resources management is becoming one of the most difficult tasks with the frequent occurrences of extreme floods and droughts. In this study we made runoff predictions for several control points in the Geum River by using the watershed runoff model, SSARR (Streamflow Synthesis and Reservoir Regulation Model), with daily RCP 4.5 and RCP 8.5 scenarios for 100 year from 1st Jan 2006 to 31st Dec 2100 at the resolution of 1 km given by Climate Change Information Center. As a result of, the Geum River Basin is predicted to be a constant flow increases, and it showed a variation in the water circulation system. Thus, it was found that the different seasonality occurred.
The Electrocoagulation-Flotation (ECF) process has great potential in wastewater treatment. ECF technology is effective in the removal of colloidal particles, oil-water emulsion, organic pollutants such as microalgae, and heavy metals. Numerous studies have been conducted on ECF; however, many of them used a conventional plate-type aluminum anode. In this study, we determined the effect of changing operational parameters such as power supply time, applied current, NaCl concentration, and pH on the turbidity removal efficiency of kaoline. We also determined the effects of different electrolyte types (NaCl, MgSO4, CaCl2, Na2SO4, and tap water), as well as the differences caused by using a plate-type and mesh-type aluminum anode, on the turbidity removal efficiency. The results showed that the optimal values of ECF time, applied current, NaCl concentration, and pH were 5 min, 0.35 A, 0.4 g/L NaCl in distilled water, and pH 7, respectively. The results also revealed that the turbidity removal efficiency of kaoline in different electrolytes decreased in the following sequence, given the same conductivity: tap water > CaCl2 > MgSO4 > NaCl > Na2SO4. The turbidity removal efficiency of the mesh-type aluminum anode was significantly greater than the plate-type aluminum anode.
In order to simulate a typhoon precisely, the satellite observation data has been assimilated using WRF (Weather Research and Forecasting model) three-Dimensional Variational (3DVAR) data assimilation system. The observation data used in 3DVAR was GPS Radio Occultation (GPS-RO) data which is loaded on Low-Earth Orbit (LEO) satellite. The refractivity of Earth is deduced by temperature, pressure, and water vapor. GPS-RO data can be obtained with this refractivity when the satellite passes the limb position with respect to its original orbit. In this paper, two typhoon cases were simulated to examine the characteristics of data assimilation. One had been occurred in the Western Pacific from 16 to 25 October, 2015, and the other had affected Korean Peninsula from 22 to 29 August, 2012. In the simulation results, the typhoon track between background (BGR) and assimilation (3DV) run were significantly different when the track appeared to be rapidly change. The surface wind speed showed large difference for the long forecasting time because the GPS-RO data contained much information in the upper level, and it took a time to impact on the surface wind. Along with the modified typhoon track, the differences in the horizontal distribution of accumulated rain rate was remarkable with the range of 600~500 mm. During 7 days, we estimated the characteristics between daily assimilated simulation (3DV) and initial time assimilation (3DV_7). Because 3DV_7 demonstrated the accurate track of typhoon and its meteorological variables, the differences in two experiments have found to be insignificant. Using observed rain rate data at 79 surface observatories, the statistical analysis has been carried on for the evaluation of quantitative improvement. Although all experiments showed underestimated rain amount because of low model resolution (27 km), the reduced Mean Bias and Root-Mean-Square Error were found to be 2.92 mm and 4.53 mm, respectively.
The Diameter at Breast Height (DBH) provides information about the volume growth of a tree. In this study, we estimated the relative growth rates of Castanea crenata and Pinus rigida as 4.07% and 3.73%, respectively. Although the difference was low, we demonstrated that the growth rate of C. crenata is slightly faster than that of P. rigida. After calculating the relative growth rate for each section, we found that the relative growth of C. crenata decreased with time. However, the relative growth rate of P. rigida showed an overall increase. The gap widths of both species showed an increasing trend. However, the gradient of the two species was different. The gradient of C. crenata was approximately 12.0, but that of P. rigida was approximately 4.7. This means that the volume growth of C. crenata was faster than that of P. rigida during 4 years. However, this was relatively a short period for measuring the volume growth pattern, and we believe that additional useful information can be obtained by conducting long-term ecological monitoring. Results of canonical correspondence analysis showed that among the climate variables, temperature was significantly related to the gap widths for both species.
This study was carried out to elucidate the chemical compositions of water-soluble inorganic ions in PM10 and PM2.5 aerosols collected during summer and winter in downtown Jejusi city. The ratios of NO3 - to the total mass of ionic species in PM10 and PM2.5 aerosols largely increase in winter compared to summer, while SO4 2- ratios in both aerosols appear to follow the opposite trend. Moreover, concentrations of Na+, Mg2+, Ca2+ and Cl- in PM10 and PM2.5-10 aerosols are higher in winter than in summer. The nitrate concentrations in PM10 and PM2.5 aerosols increase with an identical increase in excess ammonium during winter, however, nitrate formation during summer is not important owing to ammonium-poor conditions.
The effects of elevated atmospheric CO2 on growth and photosynthesis of soybean (Glycine max Merr.) were investigated to predict its productivity under elevated CO2 levels in the future. Soybean grown for 6 weeks showed significant increase in vegetative growth, based on plant height, leaf characteristics (area, length, and width), and the SPAD-502 chlorophyll meter value (SPAD value) under elevated CO2 conditions (800 μmol/mol) compared to ambient CO2 conditions (400 μmol/mol). Under elevated CO2 conditions, the photosynthetic rate (A) increased although photosystem II (PS II) photochemical activity (Fv/Fm) decreased. The maximum photosynthetic rate (Amax) was higher under elevated CO2 conditions than under ambient CO2 conditions, whereas the maximum electron transport rate (Jmax) was lower under elevated CO2 conditions compared to ambient CO2 conditions. The optimal temperature for photosynthesis shifted significantly by approximately 3°C under the elevated CO2 conditions. With the increase in temperature, the photosynthetic rate increased below the optimal temperature (approximately 30°C) and decreased above the optimal temperature, whereas the dark respiration rate (Rd) increased continuously regardless of the optimal temperature. The difference in photosynthetic rate between ambient and elevated CO2 conditions was greatest near the optimal temperature. These results indicate that future increases in CO2 will increase productivity by increasing the photosynthetic rate, although it may cause damage to the PS II reaction center as suggested by decreases in Fv/Fm, in soybean.
The removal characteristics of 2,4-dinitrophenol (2,4-DNP) from an aqueous solution by commercial Wood-based Activated Carbon (WAC) have been studied. The effects of various experimental parameters were investigated using a batch adsorption technique. The adsorption capacity of 2,4-DNP by WAC increased with a decrease in the dosage and particle size of WAC, temperature and the initial pH of the solution, and increased with an increase in the initial concentration of the solution. The adsorption equilibrium data were best described by the Redlich-Peterson isotherm model. The maximum adsorption capacities of 2,4-DNP by WAC were 573.07 mg/g at 293 K, 500.00 mg/g at 313 K, and 476.19 mg/g at 333 K, decreasing with increasing temperature. The kinetic data were well fitted to the pseudo-second-order model, and the results of the intra-particle diffusion model suggested that the adsorption process was mainly controlled by particle diffusion. The thermodynamic analysis indicated that the adsorption of 2,4-DNP by WAC was an endothermic and spontaneous process.
Meteorological characteristics related to variations in ozone (O3) concentrations in the Korean peninsula before, during, and after Typhoon Talas (1112) were analyzed using both observation data and numerical modeling. This case study takes into account a high O3 episode (e.g., a daily maximum of ≥90 ppb) without rainfall. Before the typhoon period, high O3 concentrations in the study areas (e.g., Daejeon, Daegu, and Busan) resulted from the combined effects of stable atmospheric conditions with high temperature under a migratory anticyclone (including subsiding air), and wind convergence due to a change in direction caused by the typhoon. The O3 concentrations during the typhoon period decreased around the study area due to very weak photochemical activity under increased cloud cover and active vertical dispersion under a low pressure system. However, the maximum O3 concentrations during this period were somewhat high (similar to those in the normal period extraneous to the typhoon), possibly because of the relatively slow photochemical loss of O3 by a H2O + O(1D) reaction resulting from the low air temperature and low relative humidity. The lowest O3 concentrations during the typhoon period were relatively high compared to the period before and after the typhoon, mainly due to the transport effect resulting from the strong nocturnal winds caused by the typhoon. In addition, the O3 increase observed at night in Daegu and Busan was primarily caused by local wind conditions (e.g., mountain winds) and atmospheric stagnation in the wind convergence zone around inland mountains and valleys.
Measurements of polychlorinated biphenyls (PCBs) were taken in surface sediments inside Seogwipo and Hallim Harbors of Jeju Island, Korea, to evaluate their distribution. These harbors typically have heavy ship traffic. The samples were collected three times (in June, October, and December, 2013). PCB concentrations in sediments from Seogwipo Harbor were higher than in those from Hallim Harbor, but both levels were very low, compared with those in other parts of the world. Sedimentary PCB levels had a strong correlation with organic carbon and fine granule mud content. PCB concentration values in the examined surface sediments were much lower than Sediment Quality Guidelines (SQGs) such as ER-L (Effect Rrange-Low), TEL (Threshold Effects Level) and ISQG (Interim Sediment Quality Guideline)-low value applied in countries, such as USA, Canada, and Australia. This suggests that the PCBs did not have significant biological effects on benthic organisms in the marine environment.
This study aimed to estimate the effects of replacing Mushroom By-Product (MBP) with Tofu By-Product (TBP) on the chemical composition, microbes, and rumen fermentation indices of Fermented Diets (FDs). The basal diet was formulated using MBP, TBP, rice bran, molasses, and inoculants. The MBP in the basal diet was replaced with TBP at 0, 5, and 10% on Dry Matter (DM) basis for the experimental diets. The experimental diets were fermented at 39°C for 144 h. Chemical composition, pH, microbes, and rumen fermentation indices of the FDs were analyzed. With increasing TBP replacement, crude protein content of FDs increased (L, P < 0.001), whereas crude ash content decreased (L, P = 0.002). Lactic acid bacteria and Bacillus subtilis contents in the TBP-replaced FDs were higher than those in the control (P < 0.05), whereas pH level and mold count were lower (P < 0.05). With increasing TBP replacement, in vitro rumen digestibility of DM (L, P = 0.053) and neutral detergent fiber (L, P = 0.024) increased, wheres rumen pH changed (P = 0.026) quadratically. Rumen total volatile fatty acid (L, P = 0.001) and iso-butyrate contents (Q, P = 0.003) increased with increasing TBP replacement. In conclusion, this study indicates that the replacement of MBP with TBP could improve the quality of FD.
This study used questionnaires to investigate how pre-service elementary teachers understand ocean acidification. As a result of gender, female teachers were more aware of ocean acidification than male teachers, but male teachers had a higher average rate of correct answers, with a lower standard deviation. Teachers from the natural sciences knew more about ocean acidification than did teachers the liberal arts. Teachers ranked environmental crisis in order of most dangerous to least dangerous as follow: global warming and the greenhouse effect, ozone depletion, ocean acidification, and acid rain. About 46.7% of teachers learn about ocean acidification through education, followed by broadcasts, school lectures and the internet. The educational materials most desired for teachers were videos related to ocean acidification. Pre-service elementary teachers have two broad perspectives on ocean acidification. Firstly, they refer to economic loss and food shortages, and secondly, they note that there is a need for improved awareness and publicity about ocean acidification. The role of elementary school teachers is important because their awareness of environmental issues has a considerable effect on teachers perception of the environment. Revitalizing education on ocean acidification and government support are necessary to effectively communicate the seriousness of ocean acidification. Lastly, we need to study ocean acidification in detail so as to be able to persevere toward protecting our ocean ecosystem.
Provider-oriented weather information has been rapidly changing to become more customer-oriented and personalized. Given the increasing interest in wellness and health topics, the demand for health weather information, and biometeorology, also increased. However, research on changes in the human body according to weather conditions is still insufficient due to various constraints, and interdisciplinary research is also lacking. As part of an effort to change that, this study surveyed medical practitioners at an actual treatment site, using questionnaires, to investigate what kind of weather information they could utilize. Although there was a limit to the empirical awareness that medical staff had about weather information, most respondents noted that there is a correlation between disease and weather, with cardiovascular diseases (coronary artery disease (98.5%) and hypertension (95.9% ), skin diseases (atopic dermatitis (100%), sunburn (93.8%)) being the most common weather-sensitive ailments. Although there are subject-specific differences, most weather-sensitive diseases tend to be affected by temperature and humidity in general. Respiratory and skin diseases are affected by wind and solar radiation, respectively.
Aquatic plants serve the crucial function of helping to balance water reservoir ecosystem, as they filter and remove major minerals required for algal growth such as nitrogen, ammonia, and nitrates. Aquatic plants provide food, shade, and protection for the aquatic biome in and around the reservoir. Thus, it is important to accurately determine the existence and areal extent of the aquatic plants. In the present study drone-based facilities were used for this purpose. In the Muncheon water reservoir, Gyeongbuk, the Normalized Difference Vegetation Index (NDVI) and Surface Algal Bloom Index (SABI) were used to determine the existence status of the aquatic plants. The data so obtained exhibited reasonable accuracy; drone-based facilities can be used in future to identify the areal extent of aquatic plants.