간행물

한국환경과학회지 KCI 등재 Journal of Environmental Science International

권호리스트/논문검색
이 간행물 논문 검색

권호

제17권 제11호 (2008년 11월) 12

1.
2008.11 서비스 종료(열람 제한)
Enhancing with non-metallic elemental nitrogen(N) is one of several methods that have been proposed to modify the electronic properties of bulk titanium dioxide(TiO2), in order to make TiO2 effective under visible-light irradiation. Accordingly, current study evaluated the feasibility of applying visible-light-induced TiO2 enhanced with N element to cleanse aromatic compounds, focusing on xylene isomers at indoor air quality(IAQ) levels. The N-enhanced TiO2 was prepared by applying two popular processes, and they were coated by applying two well-known methods. For three o-, m-, and p-xylene, the two coating methods exhibited different photocatalytic oxidation(PCO) efficiencies. Similarly, the two N-doping processes showed different PCO efficiencies. For all three stream flow rates(SFRs), the degradation efficiencies were similar between o-xylene and m,p-xylene. The degradation efficiencies of all target compounds increased as the SFR decreased. The degradation efficiencies determined via a PCO system with N-enhanced visible-light induced TiO2 was somewhat lower than that with ultraviolet(UV)-light induced unmodified TiO2, which was reported by previous studies. Nevertheless, it is noteworthy that PCO efficiencies increased up to 94% for o-xylene and 97% for the m,p-xylene under lower SFR(0.5 L min-1). Consequently, it is suggested that with appropriate SFR conditions, the visible-light-assisted photocatalytic systems could also become important tools for improving IAQ.
2.
2008.11 서비스 종료(열람 제한)
Flow resistance in a natural stream is caused by complex factors, such as the grains on the bed, vegetation, and bed-form, reach profile. Flow resistance in a generally stable gravel bed stream is due to protrudent grains from bed. Therefore, the flow resistance can be calculated by equivalent roughness in gravel bed stream, but estimation of equivalent roughness is difficult because nonuniform size and irregular arrangement of distributed grain on natural stream bed. In previous study, equivalent roughness is empirically estimated using characteristic grain size. However, application of empirical equation have uncertainty in stream that stream bed characteristic differs. In this study, we developed a model using an analytical method considering grain diameter distribution characteristics of grains on the bed and also taking into account flow resistance acting on each grain. Also, the model consider the protrusion height of grain.
3.
2008.11 서비스 종료(열람 제한)
In this study, we estimated the equivalent roughness using an estimation model, which considered grain distribution on the bed and the protrusion height of the grains. We also reviewed the appropriateness of the estimated equivalent roughness at the Goksung and Gurey station in the Seomjin River. To review the appropriateness of this model, we presented the water level-discharge relation curve applying the equivalent roughness to the flow model and compared and reviewed it to observed data. Also, we compared and reviewed the observed data by estimating the Manning coefficient , the Chezy coefficient , and the Darcy-Weisbach friction coefficient by the equivalent roughness. The calculation results of the RMSE showed within 5% error range in comparison with observed value. Therefore the estimated equivalent roughness values by the model could be proved appropriate.
4.
2008.11 서비스 종료(열람 제한)
A variety of fungal species are known to degrade cyanide through the action of cyanide hydratase, a specialized nitrilases which hydrolyze cyanide to formamide. This work is a report on two unknown and uncharacterized members from Neurospora crassa and Aspergillus nidulans. Recombinant forms of three cyanide hydratases (CHT) originated from N. crassa, Gibberella zeae, and A. nidulans were prepared after their genes were cloned with N-terminal hexahistidine purification tags, expressed in E. coli and purified using immobilized metal affinity chromatography. These enzymes were compared according to their pH activity profiles, and kinetic parameters. Although all three were similar, the N. crassa CHT has the widest pH range of activity above 50% and highest turnover rate (6.6×108 min-1) among them. The CHT of A. nidulans has the highest Km value of the three nitrilases evaluated in here. Expression of CHT in both N. crassa and A. nidulans were induced by the presence of KCN, regardless of any presence of nitrogen sources. These data can be used to determine optimal procedures for the enzyme uses in the remediation of cyanide-containing wastes.
5.
2008.11 서비스 종료(열람 제한)
The effect of freeze drying and fixatives in post-treating freeze drying on the morphological properties of the rose (Rosa hybrida L.) petal were investigated for the production of high quality of freeze dried rose. The morphology including form and color of the dried flowers of cut rose were depended on the drying methods. The drying time was extended due to their density and water content, and was shorter in the freeze drying than that in the natural and hot air drying. Freeze dried process for dried flowers took 2 days in a freeze dryer and did not cause shrinkage or toughening of rose petal being dried, preserving its natural shape and color. The diameter of freeze dried flowers showed little reduction compared to fresh flowers. In Hunter color values of petals of freeze dried flowers, L and a values were high and showed little variations in comparison to fresh petals. Freeze drying led to a noticeable increase in anthocyanin contents in petals, suggesting that anthocyanin contents play an important role in the acquisition of freezing tolerance. Exposure of flowers to freeze drying was accompanied by an increase in the carotenoid content. In the post-treating freeze drying, epoxy resin, a fixative, applied alone or in combination to petals of freeze dried flowers showed efficient coating for the protection from humidity and sunlight. Combined application of epoxy and acetone to freeze dried petals permitted maintenance of natural color and excellent tissue morphology, showing color stability and shiny texture in surface of petals. These findings suggest that application of fixatives to freeze dried rose petals improves the floral preservation and epoxy coating provides good quality in the freeze dried flower product.
6.
2008.11 서비스 종료(열람 제한)
Membrane separation is extensively used for water/wastewater treatment because of its efficiency separation processes. However, particles in the feed water can deposit and accumulate on the membrane surface to created cake layer. As a consequence, the selectivity of the membrane and flux through the membrane are decreased, which is called fouling/blocking phenomenon. In order to solve fouling problem, we developed a novel membrane named Carbon Whisker Membrane (CWM) which contains vapor-grown carbon fibers/whiskers on the surface of the membrane and a layer of carbon film coated on the ceramic substrate. We firstly employed polymethyl methacrylate (PMMA) as a testing material to investigate the fouling mechanism. The results suggested that Carbon Whiskers on the surface of the membrane can prevent the directly contact between the membrane body and particles so that the fouling/blocking could not occurred easily compared to the membrane without carbon whiskers. We also researched the relationship with the diameter, density of carbon whisker on the membrane surface and total flux of solutions. Finally, we will be able to control the diameter and density of carbon whiskers on the membrane and existence of carbon whiskers on the membrane, it is important factor, might be prevent fouling/blocking in the water treatment.
7.
2008.11 서비스 종료(열람 제한)
The seasonal variations of picoplankton including Prochlorococcus, Synechococcus and Picoeukayotes around Ulneung Island were investigated by flow cytometry in spring, summer and autumn in 2006. All groups of picoplankton showed clear seasonal patterns in population abundance. Among the group, Synechococcus showed the most prominent seasonal variation during the study period. The maximal abundance of Synechococcus occurred in summer and the lowest in autumn. The seasonal distribution of Prochlorococcus displayed the reverse tendency with that of Synechococcus. The abundance of Prochlorococcus ranged from 2.9×103 cells/ml in summer to 311×103 cells/ml in autumn. However, the seasonal distribution of Picoeukaryotes was shown to be relatively constant, and the maximal abundance was 81.5×103 cells/ml in summer. The highest abundance of Picoeukaryotes occurred in summer and the lowest in autumn and the seasonal distribution in abundance of Picoeukaryotes showed a similar trend with that of Synechococcus. The estimated total carbon biomass of picoplankton were ranged from 74.7 mgC/m2 to 1,055.9 mgC/m2. The highest total carbon biomass occurred in summer, but lowest occurred in autumn. The pattern of the contribution of three picoplankton to total autotrophic picoplankton carbon is different. The contribution of Synechococcus to total autotrophic picoplankton carbon is increased to 75%, but the contribution of Prochlorococcus dropped to 12% in summer. The contribution of Picoeukaryotes is ranged from 24% in summer to 72.5% in spring.
8.
2008.11 서비스 종료(열람 제한)
The efficiency of PP-g-AA and PP-g-St nonwoven fabric synthesized by photoinduced polymerization as an adsorbent for removal NH3-N from waste water was evaluated. The results evidently indicate that the adsorption capacities of NH3-N onto PP-g-AA nonwoven fabric were extremely superior to those onto sulfonated PP-g-St nonwoven fabric, PK and zeolite. PP-g-AA nonwoven fabric showed the maximum adsorption capacity of NH3-N at the degree of grafting of 80 wt.%. The adsorption behaviour of NH3-N onto PP-g-AA and sulfonated PP-g-St nonwoven fabric was controlled by an ion exchange reaction, and tended to be similar to both trends of Langmiur and Freundlish isotherm. Futhermore, PP-g-AA non-woven fabric could be regenerated more than 5 times by a simple washing with 0.1N HCl with no decrease of adsorption capacity and no degradation of physical properties. Also sulfonated PP-g-St nonwoven fabric could be regenerated by washing with 0.1N H2O4. However, their regeneration efficiency was significantly low because grafting layer acted as functional radical for adsorption was continuously desquamated in the adsorption or regeneration processes, which resulted in decrease of adsorption capacity and weight of adsorbent. All results obtained from this study indicate that the NH3-N removal capacity of PP-g-AA non-woven fabric was extremely superior to those of PP-g-St non-woven fabric, PK and zeolite.
9.
2008.11 서비스 종료(열람 제한)
Aerated submerged bio-film (ASBF) pilot plant has been developed. The presented studies optimized an inexpensive method of enhanced wastewater treatment. The objectives of this research were to describe pilot scale experiments for efficient removal of dissolved organic and nitrogen compounds by using ASBF reactor in plug-flow reactor (PFR) and improve understanding of dissolved organic matter and nitrogen compounds removal rates with dynamic relationships between heterotrophs and autotrophs in the fixed-film reactor. This research explores the possibility of enhancing the performance of shallow wastewater treatment lagoons through the addition of specially designed structures. This direct gas-phase contact should increase the oxygen transfer rate into the bio-film, as well as increase the micro-climate mixing of water, nutrients, and waste products into and out of the bio-film. This research also investigated the efficiency of dissolved organic matter and ammonia nitrogen removals in the ASBF. As it was anticipated, nitrification activity was highest during periods when the flow rate was lower, but it seemed to decline during times when the flow rate was highest. And ammonia nitrogen removal rates were more sensitive than dissolved organic matter removal rates when flow rates exceeded 2.2 L/min.
10.
2008.11 서비스 종료(열람 제한)
This study examined the catalytic destruction of 1,2-dichlorobenzene on V2O5/TiO2 nanoparticles. The V2O5/TiO2 nanoparticles were synthesized by the thermal decomposition of vanadium oxytripropoxide and titanium. The effects of the synthesis conditions, such as the synthesis temperature and precursor heating temperature, were investigated. The specific surface areas of V2O5/TiO2 nanoparticles increased with increasing synthesis temperature and decreasing precursor heating temperature. In addition, the removal efficiency of 1,2-dichlorobenzene was promoted by a decrease in heating temperature. However, the removal efficiency of 1, 2-dichlorobenzene was decreased by an anatase to rutile phase transformation at temperatures 1,300℃.
11.
2008.11 서비스 종료(열람 제한)
This study aims at the estimation of dam failure time and dam failure scenario analysis of and applied to Yeoncheon Dam which was collapsed August 1st 1999, using HEC-HMS, DAMBRK-FLDWAV simulation model. As the result of the rainfall-runoff simulation, the lancet flood amount of the Yeoncheon Dam site was 10,324 m3/sec and the total outflow was 1,263.90 million m3. For the dam failure time estimation, 13 scenarios were assumed including dam failure duration time and starting time, which reviewed to the runoff results. The simulation time was established with 30 minutes intervals between one o'clock to 4 o'clock in the morning on August 1, 1999 for the setup standard for each case of the dam failure time estimation, considering the arrival time of the flood, when the actually measured water level was sharply raising at Jeongok station area of the Yeoncheon Dam downstream, As results, dam failure arrival time could be estimated at 02:45 a.m., August 1st 1999 and duration time could be also 30 minutes. Those results and procedure could suggest how and when dam failure occurs and analyzes.
12.
2008.11 서비스 종료(열람 제한)
This study aims at the analyze of unsteady downstream flow due to dam failure along dam failure scenario and applied to Yeoncheon Dam which was collapsed August 1st 1999, using HEC-RAS simulation model. The boundary conditions of this unsteady flow simulation are that dam failure arrival time could be at 02:45 a.m. August 1st 1999 and failure duration time could be also 30 minutes. Downstream 19.5 km from dam site was simulated for unsteady flow analysis in terms of dam failure and non-failure cases. For the parameter calibration, observed data of Jeonkok station were used and roughness coefficient was applied to simulation model. The result of the peak discharge difference was 2,696 to 1,745 m³/sec along the downstream between dam failure and non-failure and also peak elevation of water level showed meanly 0.6m difference. Those results of these studies show that dam failure scenarios for the unknown failure time and duration were rational because most results were coincident with observed records. And also those results and procedure could suggest how and when dam failure occurs and downstream unsteady flow analyzes.