Eco-efficiency considers both environmental impacts and economic values. It is a useful tool for communicating with stakeholders for business decision making. This study evaluated the eco-efficiency factor (EEF) for the energy network of a dyeing company that supplies surplus heat to a neighboring apartment during the night. This symbiosis network is one of the eco-industrial park (EIP) projects in Korea and aims to benefit local residents and the industrial complex by utilizing surplus heat. In this study, two categories were annualized. The first quantified environmental burden based on CO2 emissions and quantified product value in terms of steam sales. The second used a variety of environmental factors, such as fossil fuel, water and waste, to quantify environmental burden and used steam sales to quantify value. The EEF of the symbiosis network was 1.6, using the global warming impact, and determined using the multiple variable, was 1.33. This study shows that the EEF depends on variable details of environmental burden but the values of this project were very high contrast to other business or EIP project.
The experimental determination of equilibrium constants is required to estimate concentrations of reagents and/or products in environmental chemical reactions. For an example, the choice of copper (Cu) complexation reactions was motivated by their fast kinetics and the ease of measurement of Cu by an ion‐sensitive electrode. Each individual titrant of sulfate (SO4 2‐) and oxalate (C2O4 2‐) was expected to have its own unique characteristics, depending on the bonding in Culigands connected to the aqueous species. The complexation reaction of Cu with SO4 2‐ somewhat fast reached equilibrium status compared with C2O4 2‐. The experimental equilibrium constants (Keq) of copper sulfate (CuSO4) and copper oxalate (CuC2O4) were determined 102.2 and 103~4.3, respectively.
Unlike water applications, the photocatalytic technique utilizing light-emitting-diodes as an alternative light source to conventional lamp has rarely been applied for low-level indoor air purification. Accordingly, this study investigated the applicability of UV-LED to annular-type photocatalytic reactor for removal of indoor-level benzene and toluene at a low concentration range associated with indoor air quality issues. The characteristics of photocatalyst was determined using an X-ray diffraction meter and a scanning electron microscope. The photocatalyst baked at 350 ℃ exhibited the highest photocatalytic degradation efficiencies(PDEs) for both benzene and toluene, and the photocatalysts baked at three higher temperatures(450, 550, and 650 ℃) did similar PDEs for these compounds. The average PDEs over a 3-h period were 81% for benzene and close to 100% for toluene regarding the photocatalyst baked at 350 ℃, whereas they were 61 and 74% for benzene and toluene, respectively, regarding the photocatalyst baked at 650 ℃. As the light intensity increased from 2.4 to 3.5 MW cm-1, the average PDE increased from 36 to 81% and from 44% to close to 100% for benzene and toluene, respectively. In addition, as the flow rate increased from 0.1 to 0.5 L min-1, the average PDE decreased from 81% to close to zero and from close to 100% to 7% for benzene and toluene, respectively. It was found that the annular-type photocatalytic reactor inner-inserted with UV-LEDs can effectively be applied for the decomposition of low-level benzene and toluene under the operational conditions used in this study.
In this study, adsorption of polychlorinated biphenyls(PCBs) in transformer oil on powder activated carbon (PAC) and synthetic zeolite was evaluated. Adsorption characteristics of PCBs on the PAC and zeolite has been investigated in a batch system with respect to adsorbents amount and contact time. BET results showed 908 m2/g for PAC and 483 m2/g for zeolite. The adsorption capacity of PCBs increased with an increasing input amount of absorbent. The adsorption experimental results showed that PAC removed 90% of input PCBs in transformer oil while zeolite removed only 64%. Adsorption of PCBs to PAC and zeolite fit the Freundlich model well. The Freundlich parameter, Kf, for PAC and zeolite was 193.1 and 43.0 respectively, indicating that PAC is effect adsorbent for PCBs adsorption in transformer oil.
Recently, Public Design is being applied at many kinds of urban development. But the application is not carried out well owing to ambiguity of the object of plan. The object of the design and the role from it are based on defining of the realm and type of public design. So, it is necessary to study more about the realm and type of the public design in accordance with the context of the related space and region. Through the analysis of the public design, some points of conclusion have been attained. First, the realm and type of public design is to be more simplified than ever: public facilities and public medium. So, public facilities are to be oriented toward placeness on the one hand, and public medium is to be used for regional marketing on the other hand.
This study is mainly focused on micellar effect of cetyltrimethyl ammonium bromide(CTABr) solution including alkylbenzimidazole(R-BI) on dephosphorylation of isopropyl-4-nitrophenylphosphinate(IPNPIN) in carbonate buffer(pH 10.7). The reactions of IPNPIN with R-BI⊖ are strongly catalyzed by the micelles of CTABr. Dephosphorylation of IPNPIN is accelerated by BI⊖ ion in 10-2 M carbonate buffer(pH 10.7) of 4×10-3 M CTABr solution up to 89 times as compared with the reaction in carbonate buffer by no benzimidazole(BI) solution of 4×10-3 M CTABr. The value of pseudo first order rate constant(kψ) of the reaction in CTABr solution reached a maximum rate constant increasing micelle concentration. Such rate maxima are typical of micellar catalyzed bimolecular reactions. The reaction mediated by R-BI⊖ in micellar solutions are obviously slower than those by BI⊖, and the reaction rate were decreased with increase of lengths of alkyl groups. It seems due to steric effect of alkyl groups of R-BI⊖ in Stern layer of micellar solution. The surfactant reagent, CTABr, strongly catalyzes the reaction of IPNPIN with R-BI and its anion(R-BI⊖) in carbonate buffer(pH 10.7). For example, 4×10-3 M CTABr in 1×10-4 M BI solution increase the rate constant(kψ=98.5×10-3 sec-1) of the dephosphorylation by a factor ca.25, when compared with reaction(kψ=3.9×10-4 sec-1) in 1×10-4 M BI solution(without CTABr). And no CTABr solution, in 1×10-4 M BI solution increase the rate constant(kψ=3.9×10-4 sec-1) of the dephosphorylation by a factor ca.39, when compared with reaction (kψ=1.0×10-5 sec-1) in water solution(without BI). This predicts that the reactivities of R-BI⊖ in the micellar pseudophase are much smaller than that of BI⊖. Due to the hydrophobicity and steric effect of alkyl group substituents, these groups would penetrate into the core of the micelle for stabilization by van der Waals interaction with long alkyl groups of CTABr.
Non-thermal plasma processing using a dielectric barrier discharge (DBD) has been investigated as an alternative method for the degradation of non-biodegradable organic compounds in wastewater. The active species such as OH radical, produced by the electrical discharge may play an important role in degrading organic compound in water. The degradation of N, N-Dimethyl-4-nitrosoaniline (RNO) was investigated as an indicator of the generation of OH radical. The DBD plasma reactor of this study consisted of a plasma reactor, recycling pump, power supply and reservoir. The effect of diameter of external reactor (15 ∼ 40 mm), width of ground electrode (2.5 ∼ 30 cm), shape (pipe, spring) and material (copper, stainless steel and titanium) of ground electrode, water circulation rate (3.1 ∼ 54.8 cm/s), air flow rate (0.5 ∼ 3.0 L/min) and ratio of packing material (0 ∼ 100 %) were evaluated. The experimental results showed that shape and materials of ground were not influenced the RNO degradation. Optimum diameter of external reactor, water circulation rate and air flow rate for RNO degradation were 30 mm, 25.4 cm/s and 4 L/min, respectively. Ground electrode length to get the maximum RNO degradation was 30 cm, which was same as reactor length. Filling up of glass beads decreased the RNO degradation. Among the experimented parameters, air flow rate was most important parameters which are influenced the decomposition of RNO.
The purpose of this study is to analyze psychological and physiological effects accordance with viewing and walking in the forest and urban area. In the result of measurement of physiological reactions in nervous system, viewing of the forest had a calming effect on the nervous system by reducing blood pressure and heart rate. The other hand, viewing and walking in the urban area compared to the forest area raised stress by increasing blood pressure and heart rate. In addition, viewing in forest area was effective in stress relief by noticeable reduction of the amylase concentration. In contrast, walking in the urban area was also confirmed an increase of stress by increasing the concentration of the amylase. A viewing and walking in forest area was effective in alleviating depressed on anxiety, anger, fatigue and confusion.
A pilot-scale pulse-jet bagfilter was designed, built and tested for the effects of four operating conditions (filtration velocity, inlet dust concentration, pulse pressure, and pulse interval time) on the total system pressure drop, using coke dust from a steel mill factory. Two models were used to predict the total pressure drop according to the operating conditions. These model parameters were estimated from the 180 experimental data points. The empirical model (EM) with filtration velocity, areal density, inlet dust concentration, pulse interval time and pulse pressure shows the best correlation coefficient (R=0.971) between experimental data and model predictions. The empirical model was used as it showed higher correlation coefficient (R=0.971) compared to that of the Multivariate linear regression(MLR) (R=0.961). The minimum pulse pressure predicted by empirical model (EM) was 5kg/㎠.
The adsorption behavior of Eosin Y on activated carbon (AC) in batch system was investigated. The adsorption isotherm could be well fitted by the Langmuir adsorption equation. The kinetics of adsorption followed the pseudo-second-order model. The temperature variation was used to evaluate the values of free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°). The positive value of enthalpy change ΔH° for the process confirms the endothermic nature of the process and more favourable at higher temperature, the positive entropy of adsorption ΔS° reflects the affinity of the AC material toward Eosin Y and the negative free energy values ΔG° indicate that the adsorption process is spontaneous. With the increase of the amount of AC, removal efficiency of Eosin Y was increased, but adsorption capacity was decreased. And adsorption capacity was increased with the decrease of particle size. With the increase of the amount of AC, removal efficiency of Eosin Y was increased, but adsorption capacity was decreased. And adsorption capacity was increased with the decrease of particle size.
White light and compound light were found to be the ideal light sources for improving the functionality and ornamental value of indoor plants and reducing the cost of maintenance, but because compound light hinders people from recognizing the original color of plants and makes their eyes easily tired, white light was considered the optimal light satisfying all of the ornamental value, economic efficiency and functionality resulting from plant growth. On the other hand, in the results of examining physiological changes before and after treatment on fine dust PM10 and carbon dioxide removal capacity in a closed chamber under an artificial light source, the patterns of carbon dioxide and fine dust removal were similar among the treatment groups according to light condition, but according to plant type, the removal rate per unit leaf area was highest in Spathiphyllum and lowest in Dieffenbachia. In the experiment on dust and carbon dioxide removal, the photosynthetic rate was over 2 times higher after the treatment, and the rate increased particularly markedly under compound light and white light, suggesting that the photosynthetic rate of plants increases differently according to light quality. These results show that light quality has a significant effect on the photosynthetic rate of plants, and suggests that plants with a high photosynthetic rate also have a high carbon dioxide and dust removal capacity. In conclusion, the photosynthetic rate of foliage plants increased under white and blue light that affect photosynthesis and the increased photosynthetic rate reduced carbon dioxide and fine dust, and therefore white and compound light were found to be the optimal light sources most functional and economically efficient in improving ornamental value and indoor air quality.
Available phosphorus(P2O5) in conventionally cultivated soil was more abundant in two fold than that of organically cultivated soil. Relative density of Arbuscular Mycorrhizal Fungi (AMF) was higher in organically cultivated soil, That of welsh onion cultivated soil was the highest, that of strawberry was followed and then that of pepper, respectively. Relative density of AMF was inversely proportioned to available soil phosphorus. Phosphorus content of crop and relative density of AMF were more abundant in organically cultivated crop or soil. However available soil phosphorus content was much in conventionally cultivated soil. The phosphorus contents between soil and crop were negatively correlated. The phosphorus content of crop was increased as the relative density of AMF increased. Relative density of AMF in the organically cultivated soil and phosphorus content of the crop with organic cultivation were higher than those of conventionally cultivated.
The goal of this study was to investigate the distribution chart of management and satisfaction through Hanwoo education program and to provide fundamental data and development conformity available on the management and educational program to managers. In this study, we chose 75 managers taking part in Hanwoo education program as pre-test and applied satisfaction for education program to 33 managers randomly selected as post-test.
The results of this study are as follows:
First, age and academic career had a significant (P< 0.05) effect on breeding size, breeding career, sales, and management methods. This may be due to the fact that managers in Hanwoo industry tended to raise academic standards and the age group moved towards young age rather than middle and old ages. However, an academic career was unaffected by sale and management methods.
Second, managers who randomly selected the education program showed higher satisfaction about the program and lower or usual interest and intention in the educational environment, incidental facilities, and reviews.
In conclusion, to equip the constituent parts of education program with entire propriety and an effective running system, information on breeding size and breeding career for managers in Hanwoo Industry with respect to age and academic career had to be clearly premeditated. It also needed the educational program to look at it from the standpoint of the managers.