After analyzing the actual acquisition status of carbon labeling by year and by product for the past four years, as well as its certification in the construction-related sectors of greenhouse gas emission, this study attempted to present the problems and coping strategies upon issuing the carbon labeling certification in the landscape architecture. During the period of this analysis, the carbon labelings were acquired by 134 enterprises, 267 workplaces, and 735 products, while the percentage of acquisition was highest in the regular non-durable goods(49%), followed by energy-consuming durable goods(26%), regular production goods (19%), regular durable goods(3%), and service(3%). Furthermore, the acquisition certifications in construction sectors, were highest in the various pipes/panel(8 cases), followed by concrete(6 cases), gypsum board(4 cases), and landscape architecture materials(2 cases). The landscape architecture only had two cases in the acquisition certification for the first time in 2012, which accounted for 0.27% of the entire certification products, due to the uncertainty in the process, the lack of professionalism, and the lack of comprehension. However, the study conducted on the coping strategies for carbon labeling in the landscape architecture revealed the following: (1) regular reporting system management through the division of labor in the head office and factories, (2) the building of objective DB through the adoption of data management programs such as SAP, (3) continuous promotion and vitalization of the incentive system, (4) the adoption of mandatory or preferential application system in landscaping projects, management, and bidding, (5) enhancement of elasticity in deliberation of certification by recruiting experts in the landscape architecture sectors, and (6) provision of incentives for the cooperative firms acquiring the certification and support for their participation.
Surface heat balance of the Gangjeong-Goryung Reservoir is analyzed for 12-17 August 2013. Each flux elements at the water surface is derived from the special field observations with application of an aerodynamical bulk method for the turbulent heat fluxes and empirical formulae for the radiation heat fluxes. The rate of heat storage in the reservoir is estimated by using estimated by surface heating rate and the vertical water temperature data. The flux divergence of heat transport is estimated as a residual. The features of the surface heat balance are almost decided by the latent heat flux and the solar radiation flux. On average for 12-17 August 2014 in the Gangjeong- Goryung Reservoir, if one defines the insolation at the water surface as 100 %, 94 % is absorbed in the reservoir; thereafter the reservoir loses about 30~50% by sensible heat, latent heat and net long-wave radiation. The residue of 50~80 % raises the water temperature in the reservoir or transported away by the river flow during the daytime.
The objectives of study were to evaluate fish species compositions of trophic guilds and tolerance guilds and apply ecological fish assessment (EFA) models to Bekjae Weir, Keum-River Watershed. The EFA models were Stream Index of Biological Integrity (SIBI) used frequently for running water and Lentic Ecosystem Health Assessment (LEHA) used for assessments of stagnant water. The region of Bekjae Weir as a "four major river project" was originally a lotic ecosystem before the weir construction (2010, BWC) but became more like lentic-lotic hybrid system after the construction (2011, AWC). In the analysis of species composition and ecological bioindicator (fish), fish species with a preference of running water showed significant decreases (p < 0.05), whereas the species with a preference of stagnant water showed significant increases (p < 0.05). After the weir construction, relative abundances of tolerant species increased, and the proportion of insectivores decreased. This phenomenon indicated the changes of biotic compositions in the system by the weir construction. Applications of SIBI and LEHA models to the system showed that the two model values decreased at the same time after the weir construction (AWC), and the region became more like lentic-lotic hybrid system, indicating the degradation of ecosystem health. The model values of SIBI were 19 and 16, respectively, in the BWC and AWC, and the health conditions were both "C-rank". In the mean time, the LEHA model analysis showed that the values was 28 in the BWC and 24 in the AWC, thus the health was turned to be "B-Rank" in the BWC and "C-Rank" in the AWC. indicating a degradation of ecological heath after the weir construction.
In this study, it is an object to develop a regression model for the estimation of TOC (total organic carbon) concentration using investigated data for three years from 2010 to 2012 in the Gam Stream unit watershed, and applied in 2009 to verify the applicability of the regression model. TOC and CODMn (chemical oxygen demand) were appeared to be derived the highest correlation. TOC was significantly correlated with 5 variables including BOD (biological oxygen demand), discharge, SS (suspended solids), Chl-a (chlorophyll a) and TP (total phosphorus) of p<0.01. As a result of PCA (principal component analysis) and FA (factor analysis), COD, TOC, SS, discharge, BOD and TP have been classified as a first factor. TOCe concentration was estimated using the model developed as an independent variable BOD5 and CODMn. R squared value between TOC and measurement TOC is 0.745 and 0.822, respectively. The independent variable were added step by step while removing lower importance variable. Based on the developed optimal model, R squared value between measurement value and estimation value for TOC was 0.852. It was found that multiple independent variables might be a better the estimation of TOC concentration using the regression model equation(in a given sites).
The present study was conducted to develop seed treatment for the production of healthy and clean peanut sprout. Dry heat treatment of peanut seeds reduced the incidence of the rot. The seed treatment condition at 52℃ for 10 h. was the most efficient without inhibiting seed viability significantly. Seeds were dark cultured at 27℃ for up to 9 days. The treatment of Indole-B and gibberellic acid influenced germination, T50, fresh, dry weight, hypocotyl length, hypocotyl length diameter, root length, number of lateral root and epicotyl of peanut sprout. There were no differences in the germinability of peanut seeds between gibberellic acid treatment methods but higher fresh weight was observed in the GA3 solution spray after 2 hour water soaking. The general growth and lateral root development of peanut sprouts were suppressed by Indole-B which is used for inhibiting root formation and promoting hypocotyls. The treatment of gibberellic acid promoted hypocotyl elongation, but it did not influence on the growth of hypocotyls and root system.
The present study was conducted to development mass production methods for peanut sprouts that is considered as a field of blue ocean among the agricultural products. 'Jopyeong' was the best as a major cultivar for peanut sprouts production. The manual for the production of high-quality peanut sprouts is as following. Germination temperature appropriate for production of high-quality peanut sprouts was 27℃. Peanut sprouts at the growth stage of 8th day, and older plants with advanced growth showed deteriorated merchantable and eating quality. Resveratrol compound was not found in the seeds, but its highest amount was detected from 9-day old sprouts. The best water temperature applicable to high quality peanut sprout production was 25℃. The growth of peanut sprout was inhibited by the high temperatures above 35℃ and low temperatures below 15℃.
This study was conducted to determine the effects of high temperature and deficit irrigation on growth and yield of hot pepper. Hot pepper was subjected to four irrigation treatments: fully irrigation (FI), 10, 20, and 30 days deficit irrigation (DI) combination with high temperature treatment. Control plants were grown natural environment and conventional culture methods. The plant height treated with high temperature was significantly higher than that of control plant. At FI combination with high temperature treatment, growth parameters such as stem diameter, leaf area, fresh and dry weight were the greatest. The yield was the greatest (2,036 kg/10a) under control, DI combination with high temperature treatment decreased by approximately 42% compare with FI combination with high temperature treatment. The number of abnormal fruits was approximately 38/plant under control, which was the smallest and that of 30 days DI combination with high temperature was higher 3.3 times compare with control. Flower abscission and calcium deficiency induced by DI treatments, especially those physiological disorder promoted by increasing DI treatments period. Results indicated that yield of hot pepper reduced by DI treatments, these results suggest that the growers should irrigate to proper soil moisture for preventing reduction of total fruit yield.
This study investigates weekday/weekend characteristics of PM10 and PM2.5 concentration and metallic elements in Busan in the springtime of 2013. PM10 concentration on weekday/weekend were 77.54 and 67.28 ㎍/㎥, respectively. And PM2.5 concentration on weekday/weekend were 57.81 and 43.83 ㎍/㎥, respectively. Also, PM2.5/PM10 concentration ratio on weekdays/weekend was 0.75 and 0.65, respectively. The contribution rates of Na to total metallic elements in PM10 on weekday/weekend were 38.3% and 38.9%, respectively. It would be useful in control effectively with management of urban fine particle to understand characteristics of fine particle concentration on weekday/weekend.
This study investigates weekday/weekend characteristics of PM10 concentration and chemical composition of water-soluble ions in Busan in the spring of 2013. Contribution rate of water-soluble ions to PM10 concentration in weekday/weekend were 41.5% and 38.5%, respectively. Contribution rate of SO4 2- to total ion mass in weekday/weekend were 30.4% and 33.8%, respectively. Contribution rate of total inorganic water-soluble ions in PM10 in weekday/weekend were 42.2% and 39.1% (mean 41.4%), respectively. [NO3 -/SO4 2-] ratio in weekday/weekend were 1.01 and 0.97(mean 0.99), respectively, which indicated that weekday ratio was higher. Contribution rate of sea salts and Cl-/Na+ ratio in PM10 in weekday/weekend were 8.1% and 7.6%, 0.37% and 0.41%, respectively. This research will help understand chemical composition of water-soluble ions during the weekday/weekend and will be able to measure the contribution level of artificial anthropogenic source on urban air.
The purpose of this study is to find out the air flow patterns affecting the PM10 concentration in Busan and the potential sources within each trajectory pattern. The synoptic air flow trajectories are classified into four clusters by HYSPLIT model and the potential sources of PM10 are estimated by PSCF model for each cluster from 2008 to 2012. The potential source locations of PM10 are compared with the distribution of PM10 anthropogenic emissions in east Asia developed in 2006 for the NASA INTEX-B mission. The annual mean concentrations of PM10 in Busan decreased from 51 ug/m3 in 2008 to 43 ug/m3 in 2012. The monthly mean concentrations of PM10 were high during a spring season, March to May and low during a summer season, August and September. The cluster2 composed of the air trajectories from the eastern China to Busan through the west sea showed the highest frequency, 44 %. The cluster1 composed of the air trajectories from the inner Mongolia region to Busan through the northeast area of China showed the second high frequency, 26 %. The cluster3 and 4 were composed of the trajectories originated in the southeast sea and the east sea of Busan respectively and showed low frequencies. The concentrations of in each cluster were 47 ug/m3 in cluster1, 56 ug/m3 in cluster2, 42 ug/m3 in cluster3 and 37 ug/m3 in cluster4. From these results, it was proved that the cluster1 and 2 composed of the trajectories originated in the east and northeast area of China were the causes of high PM10 concentrations in Busan. The results of PSCF and CWT model showed that the potential sources of the high PM10 concentrations were the areas of the around Mongolia and the eastern China having high emissions of PM10 from Beijing, Hebei to Shanghai through Shandong, Jiangsu.
In this study the urban atmospheric environment map in Busan was made and it consist of the atmospheric environment element map and the atmospheric environment analysis map. The atmospheric environment element map covered the topography, the urban climate, the air pollutant emission, ozone and PM10 concentrations in Busan and the atmospheric environment analysis map included the thermal environment and the wind flow by using WRF meteorological numerical simulation. The meteorological elements from 2007 to 2011 in Busan were used in this study. As a result, in the center of Busan and Buk-gu along to the Nakdong river was the temperature high. To analyze the air flow of Busan 3 clusters depending on the wind direction were extracted with the cluster analysis. The results of the analysis on the detailed wind field of each cluster showed that the weak ventilation could be happened locally at the specific meteorological condition.
This study measured temperatures and albedos of urban surfaces for different colors and materials during summer, and calculated the energy budget over different urban surfaces to find out the thermal performance affecting the heat built-up. The study selected six surface colors and 13 materials common in urban landscape. Their surface temperatures (Ts) and albedos were measured at a given time interval in the daytime from June to August. Average Ts over summer season for asphalt-colored brick was 4.0℃ higher than that for light red-colored one and 9.7℃ higher than that for white-colored one. The Ts for artificial surface materials of asphalt paving, brown brick wall, and green concrete wall was 6.0℃ higher than that for natural and semi-natural ones of grass, grassy block, and planted concrete wall. There was the greatest difference of 16.3℃ at midafternoon in the Ts between asphalt paving and planted concrete wall. Average albedo over summer season of surface materials ranged from 0.08 for asphalt paving to 0.67 for white concrete wall. This difference in the albedo was associated with a maximum of 15.7℃ difference at midafternoon in the Ts. Increasing the albedo by 0.1 (from 0.22 to 0.32) reduced the Ts by about 1.3℃. Average storage heat at midday by natural and semi-natural surfaces of grass and grassy block was about 10% lower than that by artificial ones of asphalt, light-red brick, and concrete. Reflected radiation, which ultimately contributes to heating the urban atmosphere, was 3.7 times greater for light-red brick and concrete surfaces than for asphalt surface. Thus, surfaces with in-between tone and color are more effective than dark- or white-colored ones, and natural or semi-natural surfaces are much greater than artificial ones in improving the urban thermal environment. This study provides new information on correlation between Ts and air temperature, relationship between albedo and Ts, and the energy budget.
This study analyzed a correlation between South China Sea summer (June to September) monsoon (SCSSM) and the ENSO for the last 32 years (1979 to 2010). There was a correlation that the higher (lower) the SST in the Niño-3.4 region was, the weaker (stronger) the SCSSM intensity was. To identify the reason for this correlation, a difference of means between 8 El Niño years and 8 La Niña years (June to September).
The analysis on the difference between two groups with respect to the 850 hPa stream flows showed that there were anomalous huge cyclones in the subtropical Pacific in the both hemispheres so that cold and dry anomalous northerlies were strengthened in the South China Sea relatively while anomalous westerlies were strengthened from the Maritime Continent to the off the coast of Chile. The analysis on the difference between two groups with respect to the 200 hPa stream flows showed that the opposite anomalous pressure system pattern to that in the 850 hPa stream flows were shown. In the subtropical Pacific of the both hemispheres, anomalous anticyclones existed so that anomalous easterlies were strengthened from the Maritime Continent to the equatorial central Pacific. Considering the anomalous atmospheric circulations in the upper and lower layers of the troposphere, upward airflows from the equatorial central and eastern Pacific were downward in the South China Sea and the Maritime Continent, which was a structure of anomalous atmospheric circulations. This means that the Walker Circulation was weakened and it was a typical structure of atmospheric circulations revealed in El Niño years.