간행물

한국환경과학회지 KCI 등재 Journal of Environmental Science International

권호리스트/논문검색
이 간행물 논문 검색

권호

제30권 제1호 (2021년 1월) 10

ORIGINAL ARTICLE

1.
2021.01 서비스 종료(열람 제한)
The purpose of this study is to verify the physiological and psychological benefits of indoor garden to humans and to analyze the comparison according to Type A behavior pattern. The subjects included 18 male university students. Heart rate variation was used as a parameter of physiological assessment, and Semantic Differential (SD), Profile of Mood States-Brief (POMS), and State-Trait Anxiety Inventory (STAI) were used as tools for psychological evaluation. The participants were subjected to a psychological evaluation when they were present in a garden. As a result, the parasympathetic nervous activity was increased in the indoor garden. In the analysis of psychological evaluation, indoor garden improved the positive mood states and decreased negative feelings with significant changes only in Type A group. This study supported that indoor garden can have physiological and psychological relaxing effects, which could be more significant in Type A group than Type B.
2.
2021.01 서비스 종료(열람 제한)
This research was conducted to propose the basic direction of a smart city plan for the satisfaction of residents of Gangwon-do . Initially, the awareness of smart cities among the residents of Gangwon-do was as follows: The response “I have no idea” was 21.7% higher and “I do not know the details, but have heard of it” was 15.1% lower than the awareness among residents across the nation. Based on these results, it was confirmed that awareness was very low despite the government’s smartification reinforcement policy. In addition, the residents of Gangwon-do expected that their time would be saved and their living convenience would increase but were worried that their privacy would be invaded and that the conflict between generations would intensify. Thus, it is necessary to develop a plan to enhance the awareness of smart cities, as well as a plan to enhance digital awareness. Second, based on the importance of and satisfaction with the urban problem response system examined among the residents of Gangwon-do, it seems necessary to prioritize improvements in public space control and administrative problem responses involving deteriorated parks/plazas, pedestrian environment, and administrative processing inefficiency and fairness. Additionally, the first prioritization priority of the residents of Gangwon-do was “health/welfare/medical service” (27.7%); the second and third highest priorities were “transportation service” (26.3%) and “environmental service” (19.0%), respectively. In particular, as “transportation service” was highly preferred in the Chuncheon and Wonju regions and “health/welfare/medical service” was highly preferred in the Gangneung, Sokcho, and other southern regions, it was confirmed that the level of urbanization is deeply associated with smart services.
3.
2021.01 서비스 종료(열람 제한)
To reduce pollution, decrease the production of carbon dioxide, and to maintain a secure supply of energy, interest continues to grow in the area of renewable energy especially since there is a finite supply of cheap oil. Wind energy is one of the most viable options to consider and supply part of the energy needed to reduce dependence on foreign oil. However, it is difficult to predict the wind speed in an environment with many obstacles such as buildings and trees and getting accurate dimensions of those obstacles is difficult particularly on sloped mountainous terrain. In this study a drone was used to create a 3-D map of the campus of the Catholic University of Pusan. The dimensions and elevations for the 3-D map were used to make a model of the school campus in the CFD program Envi-met. Simulations were run for five different wind directions and 4 different elevations to find the location that would give the highest electrical output for a wind turbine. When considering all of these variables it was found that the optimal location was above the Student Union which had a 40% higher wind speed and could produce 274% more electrical power than the original wind speed.
4.
2021.01 서비스 종료(열람 제한)
This study analyzed the status of climate-change indicator plants native to the main islands of the Korean peninsula, while elucidating their distribution characteristics. Information on flora from over 129 island locations, comprising more than 100 species of native plants, was collected, compiled into a database, and utilized as raw data. The distribution of 193 climate-change indicator plants was confirmed. The distribution area of broadleaf evergreen trees and ferns, including Mallotus japonicus and Cyrtomium falcatum, was relatively wide. In contrast, the distribution of common northern plants such as Corydalis turtschaninovii and Malus baccata was limited. If global warming persists, northern plant distribution is expected to decrease rapidly in the Korean Peninsula island region, while the northern limit line of the southern plants is expected to migrate further northward. During this process, it is likely that the plant congregation structure and species diversity within the island region will change dynamically. In this study, comparative analyses between species and regions were conducted by assessing the relative frequency of their occurrence, and six types of botanical geographic distribution patterns were noted.
5.
2021.01 서비스 종료(열람 제한)
In this study, the odor of the parts and the odor of the surrounding environment were classified and verified. In order to increase the reliability of odor quantitative/qualitative analysis, the selection criteria for 5 sensory evaluators were established, and the n-Butanol control solution for each odor intensity was periodically trained to recognize the odor intensity before sensory evaluation. In addition, although various odor thresholds have been used through several studies, verification of whether the odor intensity value obtained through GC/MSD analysis is similar to the degree to which a person directly smells and feels it. It is important to select the odor threshold that has the best correlation with the odor intensity calculated by the person smelling the odor. Finally, sampling and measuring flowing airflow and temporary odors such as odor component analysis was experimentally difficult due to limited collection space and differences in concentration of generated components. In this study, a quantitative analysis was made possible by using the low temperature concentration (cooling) trap method. Through this, it was confirmed that the correlation with the actual odor intensity was not caused by the product itself, but by the environmental factor discharged from the product after creating the odor environment.
6.
2021.01 서비스 종료(열람 제한)
Photocatalytic green energy H2 production utilizing inexhaustible solar energy has been considered as a potential solution to problems of energy scarcity and environmental contamination. However, the design of a cost-effective photocatalyst using simple synthesis methodology is still a grand challenge. Herein, a low-cost transition metal, Cu-loaded one-dimensional TiO2 nanorods (Cu/TNR) were fabricated using an easy-to-use synthesis methodology for significant H2 production under simulated solar light. X-ray photoelectron spectral studies and electron microscopy measurements provide evidence to support the successful formation of the Cu/TNR catalyst under our experimental conditions. UV-vis DRS studies further demonstrate that introducing Cu on the surface of TNR substantially increases light absorption in the visible range. Notably, the Cu/TNR catalyst with optimum Cu content, achieved a remarkable H2 production with a yield of 39,239 μmol/g after 3 h of solar light illumination, representing 7.4- and 27.7-fold enhancements against TNR and commercial P25, respectively. The notably improved H2 evolution activity of the target Cu/TNR catalyst was primarily attributed to its excellent separation and efficiently hampered recombination of photoexcited electron-hole pairs. The Cu/TNR catalyst is, therefore, a potential candidate for photocatalytic green energy applications.
7.
2021.01 서비스 종료(열람 제한)
The purposes of this study were to evaluate the removal characteristics of COD, Ni, and P and to derive appropriate operating conditions for the plating wastewater according to NaOCl reaction time and pH operating conditions in the BPC unit process during the plating wastewater treatment process. As a results of evaluating the removal characteristics for raw wastewater by each BPC unit process, the removal efficiencies of COD, Ni and P in BPC 1-1 unit process were 72.8%, 99.1%, and 100.0%. Therefore, the proper reaction time of NaOCl was derived as 21.1 minutes. In order to maintain the +800 mV ORP and the reaction time of 20 minutes, the temporary injection and continuous injection of NaOCl in the BPC unit process were 13.7 mL and 18.7 mL, respectively. It was found that the temporary injection method of NaOCl reduced the chemical cost by 36.5% compared to the continuous injection method. Also, Ni showed the highest removal efficiency of 97.8% at pH 10.5. On the other hand, P showed a removal efficiency of 57.4% at pH 10.0.
8.
2021.01 서비스 종료(열람 제한)
This study was carried out to establish optimal conditions for breaking dormancy of Agastache rugosa O. Kuntze seeds. A series of experiments according to seed maturity and treatment with plant growth regulators were performed to improve germination percentage and synchronize germination of the seeds. In addition, it was conducted to test whether the useful effect of seed treatment before sowing leads to healthy seedling and early vigorous growth. The average seed size was 1.85 mm (length) x 0.82 mm(width). The seed size was much smaller than other vegetable seeds. Seeds colorappeared dark brown, the shape of the seeds was oval and the weight of 1,000seeds was 352.8 mg. The optimum germination temperature was 22℃. Light exposure during germination did not affect germination promotion, suggesting that A. rugosa seeds are a kind of dark germinating seeds. Seed dormancy lasted for 40 days after harvesting, and GA3 treatment of dormant seeds could break dormancy. There were significant differences in germination percentage and rate according to the maturity of seeds. The germination percentage of mature seeds was 10 – 18% higher than that of immature seeds, and germination rate was 2 days faster. GA3 treatment during growth regulator treatment improved germinability, but BAP or ethephone treatment did not. The optimal growth regulator concentration of for germination was the combination treatment of 100 mM GA3 + 100 mM BAP.
9.
2021.01 서비스 종료(열람 제한)
Herb has been categorized as a special plants from the beginning of human history and used in different medical systems in different cultures. This research has classified soil into 6 kinds that have diverse elements to see to which various kinds of savory(satureja hortensis) adapt well, experimenting from sowing to flowering for around 13 weeks, and also divided indoor conditions to get the result below. In conclusion, growth status of savory depending on the kinds of soil suggest that in indoor conditions the savory if planted in ⑤ bed soil compounded with saprolite and poultry manure grew better than any other condition. On the other hand, the growth status was bad in ① masato, ② clay, ④ bed soil mixed with saprolite, and ⑥ bed soil mixed with clay conditions. Though you can see the immediate effect of soil on the growth of savory, I’d like to reveal the details of how elements of savory operate in which kind of soil and outdoor conditions the goal of this research, in the next research.
10.
2021.01 서비스 종료(열람 제한)
In the current study, MIL-101(Cr)-SO3H[HCl] as metal-organic frameworks (MOFs) was fabricated via a hydrothermal method. The physicochemical properties of the synthesized material were characterized using XRD, FT-IR, FE-SEM, TEM, and BET surface area analysis. The XRD diffraction pattern of the prepared MIL-101(Cr)-SO3H[HCl] was similar to previously reported patterns of MIL-101(Cr) type materials, indicating successful synthesis of MIL-101(Cr)-SO3H[HCl]. The FT-IR spectrum revealed the molecular structure and functional groups of the synthesized MIL-101(Cr)-SO3H[HCl]. FE-SEM and TEM images indicated the formation of rectangular parallelopiped structures in the prepared MIL-101(Cr)-SO3H[HCl]. Furthermore, the EDS spectrum showed that the synthesized material consisted of the elements of Cr, O, S, and C. The fabricated MIL-101(Cr)-SO3H[HCl] was then employed as an adsorbent for the removal of Sr2+ and Cs+ from aqueous solutions. The adsorption kinetics and adsorption isotherm models were studied in detail. The maximum adsorption capacities of MIL-101(Cr)-SO3H[HCl] for Sr2+ and Cs+ according to pH (3, 5.3∼5.8, 10) were 35.05, 43.35, and 79.72 mg/g and 78.58, 74.58, and 169.74 mg/g, respectively. These results demonstrate the potential of the synthesized MOFs, which can be effectively applied as an adsorbent for the removal of Sr2+ and Cs+ ions from aqueous solutions and other diverse applications.