In this study, a horticultural therapy program was performed by employing the anger experienced by people during daily life activities in the emotion regulation strategy-based program to identify the influence of the horticultural program on anger control in the caregivers for patients with dementia. To measure this influence, two tools were used: a self-administered questionnaire survey, which is a subjective test, and an instrumental test, which can measure the physical index that detects the physical changes through anger. For the preliminary test, depression, stress, self-esteem, anxiety, and anger state-characteristic were tested using the self-administered questionnaire. For the follow-up test, the self-administered survey and the test using the physical index were performed in a manner similar to that of the preliminary test. The self-administered questionnaire comprised questions suitable to this study and considered the age, education level, and economic aspect of the subjects. The test results indicated that the experimental group subjected to the emotion regulation strategy-based horticultural therapy showed very significant reduction in depression and anger and significant reduction in stress, self-esteem, and anxiety. In the physical index test, the systolic and diastolic blood pressures were reduced, and the pulse rate and respiration rate reduced before and after the therapy, thus, proving the effectiveness of the therapy in anger control.
This study aimed to provide preliminary data for the improvement of the tree doctor qualification test (first written test), which was newly created by enforcing the Forest Protection Act on June 28, 2018., The high demand for system improvement accelerated this study. The results were analyzeds through literature and questionnaire surveys. Writing test questions and the license of the tree doctor qualification exam are currently managed by the Korea Forestry Research Institute, and it is deemed that the test should be entrusted to Human Resources Development Service of Korea for fair and transparent management. Additionally, the plan for the improvement of the subject-wise scope of examination questions writing, difficulty of test questions, and acceptance rate of the first test should be prepared after public hearings or seminars related to the examination questions.
The purpose of this study was to determine the optimal sound absorption conditions by comparing the sound absorption characteristics of fresh and air-dried leaves of Quercus glauca, the main species of evergreen broadleaf trees (EBLT) in southern Korea. The sound absorption coefficients (SACs) obtained under 18 conditions were comparatively analyzed. The SAC of air-dried leaves improved significantly with increasing leaf layer thickness. The highest average SAC in the fresh leaf group was 0.617, which was observed under the condition of a leaf specimen size of 0.5 × 0.5 cm2 and a leaf layer thickness of 1.75 cm. In a group of air-dried leaves, this was 0.615 under the condition of a leaf specimen size of 0.5 × 0.5 cm2 and a leaf layer thickness of 2.50 cm. The maximum value of SAC for each wavelength was observed under the condition of a leaf layer thickness of 2.50 cm consisting of 0.5 × 0.5 cm2 leaf specimens, ranging from 1,400 Hz to 1,500 Hz.
This study investigated the effect of May 31, 2022 Miryang wildfire on fine particle concentrations in Busan and Gimhae, which are neighboring urban areas. In addition, fine particle characteristics and air pollution concentrations were investigated in Miryang, where haze occurred. The Miryang city wildfire that occurred on May 31, 2022, at 0925 LST, was driven by strong north winds and increased fine particle concentrations in Dongsangdong and Jangyoodong, Gimhae City, which are approximately 35 km to the southeast and south, respectively, of the wildfire occurrence site. Furthermore, the fine particle concentration in Myeongjidong, which is approximately 50 km south-southeast of the wildfire site, exhibited a temporary increase at 1400 LST owing to the effects of wildfire smoke. On the morning of June 1, the day after the fire, the Miryang area had very bad visibility because of the smoke from the fire. Therefore the PM10 and PM2.5 concentrations in Naeildong, 3 km south of the wildfire site, were 276 μg/㎥ and 222 μg/㎥, respectively, at 1200 LST. In addition, the gases O3, CO, and SO2 showed high concentrations at the time of haze generation. This study provides insights into policy making in response to the rapid increase in fine dust when wildfire occurs near cities.
This study evaluated the biochemical methane potential (BMP) of primary sludge, secondary sludge, and food waste in batch anaerobic mono-digestion tests, and investigated the effects of mixture ratio of those organic wastes on methane yield and production rate in batch anaerobic co-digestion tests, that were designed based on a simplex mixture design method. The BMP of primary sludge, secondary sludge and food waste were determined as 234.2, 172.7, and 379.1 mL CH4/g COD, respectively. The relationships between the mixing ratio of those organic wastes with methane yield and methane production rate were successfully expressed in special cubic models. Both methane yield and methane production rate were estimated as higher when the mixture ratio of food waste was higher. At a mixing ratio of 0.5 and 0.5 for primary sludge and food waste, the methane yield of 297.9 mL CH4/g COD was expected; this was 19.4% higher than that obtained at a mixing ratio of 0.3333, 0.3333 and 0.3333 for primary sludge, secondary sludge, and food waste (249.5 mL CH4/g COD). These findings could be useful when designing field-scale anaerobic digersters for mono- and co-digestion of sewage sludges and food waste.
The advanced oxidation treatment using persulfate and zero-valent iron (ZVI) has been evaluated as a very effective technology for remediation of soil and groundwater contamination. However, the high rate of the initial reaction of persulfate with ZVI causes over-consumption of an injected persulfate, and the excessively generated active species show a low transfer rate to the target pollutant. In this study, ZVI was modified using selenium with very low reactivity in the water environment with the aim of controlling the persulfate activation rate by controlling the reactivity of ZVI. Selenium-modified ZVI (Se/ZVI) was confirmed to have a selenium coating on the surface through SEM/EDS analysis, and low reductive reactivity to trichlroethylene (TCE) was observed. As a result of inducing the persulfate activation using the synthesized Se/ZVI, the persulfated consumption rate was greatly reduced, and the decomposition rate of the model contaminant, anisole, was also reduced in proportion. However, the final decomposition efficiency was rather increased, which seems to be the result of preventing persulfate over-consumption. This is because the transfer efficiency of the active species (SO4-∙) of persulfate to the target contaminant has been improved. Selenium on the surface of Se/ZVI was not significantly dissolved even under oxidation conditions by persulfate, and most of it was present in the form of Se/ZVI. It was confirmed that the persulfate activation rate could be controlled by controlling the reactivity of ZVI, which could greatly contribute to the improvement of the persulfate oxidation efficiency.
Under constant environmental pollution, the incidence of Atopic Dermatitis (AD) caused by air pollutants and allergens has increased. AD is an allergy inflammatory skin disease characterized by pruritus, eczema, and skin dryness. In herbal medicine, Anemarrhena asphodeloides (Anemarrhenae Rhizoma; AR) has been utilized to treat Alzheimer’s disease, osteoporosis, hypertension, and inflammation. The purpose of study evaluated the effect of AR in a mouse model of 2,4-dinitrochlorobenzene (DNCB)-induced AD-like skin lesions. After acclimatization for 5 days, the mice (6-week-old, male Balb/c) were divided into five groups (n=6/group): NC (normal control), DNCB (control), Dex (5 mg·kg-1, p.o.), AR100 (100 mg·kg-1, p.o.), and AR300 (300 mg·kg-1, p.o.). On days 1 and 3, 1% DNCB was applied to the skin and ears. After 4 days, 0.5% DNCB was applied once every 2 days for 2 weeks. Then, skin and ears eczema area and severity index (EASI); skin nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) levels; and plasma immunoglobulin E (IgE) levels were examined. The AR groups showed lower EASI, skin and ear thickness, mast cell count, and IgE levels than the control groups. Moreover, AR reduced iNOS, COX-2, and PGE2 levels. Therefore, AR possesses anti-inflammatory properties and can improve skin damage, indicating its therapeutic potential against AD.
Kadsura coccinea (Lem.) A.C. Smith is used as a medicinal plant and cosmetic material in China and Southeast Asia. To mass-produce Kadsura coccinea seedlings, the effects of gibberellic acid (GA3) and cold stratification treatments on seed germination were investigated. Seed germination rate with GA3 treatment was most effective at concentrations of 250 or 500 mg/L. With respect to mean germination time (MGT), mean daily germination, and T50 (days to reach 50% seed germination), the germination-promoting effect was improved as the concentration of GA3 increased. Stem growth of seedlings was the highest following GA3 treatments of 250 and 500 mg/L, and the growth promoting effect gradually decreased as the concentration of GA3 decreased. Root growth was stimulated at GA3 concentrations of 250–1,000 mg/L. Examination of the effect of stratification treatment for 15, 30 and 60 days at temperatures of 0, 5 and 10℃ on the germination rate revealed that the most stratification treatment temperature was 10℃, and the results improved with longer treatment periods. Altogether, GA3 and stratification treatments improved the seed germination rate, shortened the MGT, improved germination uniformity, and produced healthy seedlings.