This study elucidates the COD removal of dye (Rhodamine B) through electrochemical reaction. Effects of current density (7.2 to 43.3 mA/cm2), electrolyte type (NaCl, KCl, Na2SO4, HCl), electrolyte concentration (0.5 to 2.0 g/L), air flow rate (0 to 4 L/min) and pH (3 to 11) on the COD removal of Rhodamine B were investigated. The observed results showed that the increase of pH decrease the COD removal efficiency. Whereas, the increase of current density, NaCl concentration and air flow rate caused the increase of the COD removal of Rhodamine B.
This article reveals the relationship between the body characteristics of the elder people and the size of park facilities during utilization of parks by scientific investigation. The experiment involves 540 elder people, and offer concrete evidence for park design in ageing society. These evidences mainly consists of the following aspects: First, the relation between physical situation of elder people and their using parks. Secondly, the relation between the hearing status and exchange circle diameter in elders. The last is the relation between the distance visual acuity and designing the scene. Finally we get the most suitable step length range, stairs height, road slope, communication space diameter and general formulas about the best vision distance for elder people.
This research investigated to reduce mass of heavy metals in AMD(acid mine drainage) by microbial mats formed on the channel bed. As, Cd, Cu, Fe, Mn and Zn components were monitored in water and microbial mats, at three points (AMD1, AMD2 and AMD3), in a total of six times. Average daily discharge mass of heavy metals was highest in July, Fe component contained more than 76% of total discharge mass. Discharge mass of heavy metals of AMD and heavy metal contents in microbial mats decreased with downstream at channel. Heavy metal components that average daily discharge mass is over 0.5 kg were Fe, Cu and Zn, and they were highest in July. Average removal efficiency of heavy metals in AMD was highest about 21% in Fe, this microbial mats were due to form from precipitation of Fe component in AMD by aerobic iron bacteria. Relative content for As component in microbial mats than AMD was over 16 times, this As components were due to absorb at iron oxide and iron hydroxide on the surface of microbial mats.
The elevator is needed healthy and comfortable indoor air quality (IAQ) for using many people, but we found nothing about IAQ studies of an elevator. In general, air in the elevator car is sucked from the elevator’s hoistway straight into the car using a fan. The air sucked into the hoistway may be filled with dust, mold and bacteria.
This study was performed to measure of characteristics of indoor air quality (PM10, falling bacteria, CO2, Rn and HCHO) in elevator`s hoistway, CAR and lobby of 8 sites (4 apartments and 4 commercial buildings) in Gyeongnam from May, 2010 to January, 2011. With regards to the differences of pollutant distribution among hoistway, CAR, and lobby, the concentration of Rn and HCHO were the highest in hoistway followed by CAR and lobby, and PM10, falling bacteria and CO2 were the highest in CAR followed by hoistway and lobby. Mean concentrations of PM10 were 104.9 μg/m3 in CAR, 92.3 μg/m3 in hoistway and 68.2 μg/m3 in lobby, respectively.
Zeolite 4A was synthesized by fusion method from coal fly ash discharged at the thermal power plants. The synthesized zeolite(FAZ) was characterized through particle size analyzer, XRD, XRF and SEM. N2 adsorption-desorption measurement was used to examine surface and pore structures. The adsorption experiments were carried out under dynamic conditions of trace SO2 in N2 to investigate SO2 adsorption capacity of FAZ. The experiments were conducted to characterize the breakthrough characteristics of SO2 in a fixed bed under different operating conditions including temperature(50-125℃), concentration of SO2(3000-10000 ppm) and FAZ with 4 kinds of commercial zeolite. The adsorption capacity of FAZ was 53.84 mgSO2/g adsorbent, larger than that of the same type commercial zeolite(WK4A).
The application of disinfection models on the plasma process was investigated. Nine empirical models were used to find an optimum model. The variation of parameters in model according to the operating conditions (first voltage, second voltage, air flow rate, pH) were investigated in order to explain the disinfection model. In this experiment, the DBD (dielectric barrier discharge) plasma reactor was used to inactivate Ralstonia Solanacearum which cause wilt in tomato plantation. Optimum disinfection models were chosen among the nine models by the application of statistical SSE (sum of squared error), RMSE (root mean sum of squared error), r2 values on the experimental data using the GInaFiT software in Microsoft Excel. The optimum model was shown as Weibull+talil model followed by Log-linear+ Shoulder+Tail model. Two models were applied to the experimental data according to the variation of the operating conditions. In Weibull+talil model, Log10(No), Log10(Nres), δ and p values were examined. And in Log-linear+Shoulder+Tail model, the Log10(No), Log10(Nres), kmax, Sl values were calculated and examined.
Adsorption experiment of carbon dioxide was performed on MCM41 silica with a 30 wt .% EDA(ethylenediamine) loading at different CO2 inlet concentration and various adsorption temperature. The surface characteristics of CO2 capturing agent were carried out using BET analysis, X-ray diffraction and FT-IR. The results of BET showed 781 m2/g for MCM41 and 464 m2/g for EDA/MCM41. X-ray diffraction results reveled typical hexagonal pore system. The higher sorption capacity of EDA/MCM41 was about 80 mgco2/gsorbent with 50% CO2 inlet concentration and 303 K adsorption temperature. The isosteric heat of adsorption in 303-353 K ranged from -25.47 to -28.24 KJ/mole for EDA/MCM41, which indicates CO2-EDA/MCM41 interaction with exothermic adsorption process. Finally, the performance of EDA/MCM41 in 10 consecutive sorption-desorption runs was a stable with only a minor drop in its sorption capacity.
Emission rates of biogenic hydrocarbon emitted from broad-leaved trees grown at Jeju Island were estimated using a dynamic enclosure method. Leaf temperature, PAR and relative humidity were monitored during the sampling time. The emission rates of isoprene and monoterpene were measured for five plants(Carpinus laxiflora, Quercus serrata, Styrax japonicus, Quercus acutissima, Quercus crispula) during the sampling period at the Halla mountain sites. Among five tree species, the highest isoprene emission rate of 10.60 ㎍ gdw-1hr-1 was observed for Quercus serrata. The seasonal emission rates were the highest during summer and the emission of isoprene was highly affected by light and temperature variations. The highest emission rate of isoprene was occurred between 13:00 and 14:00, but isoprene was not emitted in nighttime because of the absence of light.
Recently, a variety of GIS-based tools enabling to generate topographic parameters for hydrologic and hydraulic researches have been developed. However, most of GIS-based tools are usually insufficient to estimate and visualize river channel slopes especially along the river network, which can be possibly utilized for many hydraulic equations such as Manning's formula. Many existing GIS-based tools have simply averaged cell-based slopes for the other advanced level of hydrologic units as likely as the mean watershed slope, thus that the river channel slope from the simple approach resulted in the inaccurate channel slope particularly for the mountain region where the slope varies significantly along the downstream direction. The paper aims to provide several more advanced GIS-based methodologies to assess the river channel slopes along the given river network. The developed algorithms were integrated with a newly developed tool named RiverSlope, which adapted theoretical formulas of river hydraulics to calculate channel slopes. For the study area, Han stream in the Jeju island was selected, where the channel slopes have a tendency to rapidly change the upstream near the Halla mountain and sustain the mild slope adjacent to watershed outlet heading for the ocean. The paper compared the simple slope method from the Arc Hydro, with other more complicated methods. The results are discussed to decide better approaches based on the given conditions.
Due to the difficulties for measuring flood discharge in the dangerous field conditions, conventional instruments with relatively low accuracy such as float still have been widely utilized for the field survey. It is also limited to use simple stage-discharge relationship for assessment of the flood discharge, since the stage-discharge relationship during the flood becomes complicated loop shape. In recent years, various non-intrusive velocity measurement techniques such as electromagnetic wave or surface images have been developed, which is quite adequate for the flood discharge measurements. However, these new non-intrusive techniques have little tested in the flood condition, though they promised efficiency and accuracy. Throughout the field observations, we evaluated the validity of these techniques by comparing discharge and velocity measurements acquired concurrently during the flood in a mountain stream. As a result, the flood discharge measurements between electromagnetic wave and surface image processing techniques showed high positive relationship, but velocities did not matched very well particularly for the high current speed more 3 m/s. Therefore, it should be noted here that special cares are required when the velocity measurements by those two different techniques are used, for instance, for the validation of the numerical models. In addition, authors assured that, for the more accurate flood discharge measurements, velocity observation as well as stage height is strongly necessary owing that the unsteady flow occurs during the flood.
The effect of elevation and meteorological elements is analyzed in Jeju Island for analysis of evapotranspiration with two different height observation station during 3 years data. The slope of temperature gradient recorded 1.30 ℃/100 m from the analysis of temperature data. There is much difference evapotranspiration between low elevation and high elevation station because of decrease solar radiation and wind speed with height increase. The evapotranspiration is observed by mini lysimeter at Hankukgonghang. The result of observation is presented 34.2% of global solar radiation changed into evapotranspiration during 4 clear days.
The purpose of this study was to determine optimum conditions for the cultivation of Tetraselmis suecica (T. suecica) under illumination of four different types of LEDs (i.e., blue, red, white, and mixed). Initial cell concentration was 4×104 cells/mL and temperature of reactor was maintained between 21-240C. Specific growth rates were 0.72 day-1(white), 0.58 day-1(red), 0.49 day-1(mixed), and 0.49 day-1(blue). Thus, white LEDs was used for the cultivation of T. suecica. Tests with white LEDs under different light intensity, which was conducted to determine optimum light intensity of white LEDs, showed that 9,000 lux of illumination resulted in fastest cell growth and greatest cell concentrations. To avoid shadow effects by dense cell populations, aeration was performed. Cell concentration increased 3.8 times when aeration was used.
The objective of this study was undertaken to investigate changes in fatty acid profile of breast and thigh muscle of old laying hens as transferred from cage to backyard raising system and to provide basic information on using old laying hens to producers for environmental managements. Overall, percentages of unsaturated fatty acid obtained from breast and thigh muscle with cage and backyard raising system are the most abundant, followed by saturated fatty acid. For breast muscle, there were no differences (P>0.05) between cage rearing system and backyard raising system in saturated fatty acid (SFA) and mono unsaturated fatty acid (MUFA). Poly unsaturated fatty acid (PUFA) and PUFA:SFA ratios were significantly higher in backyard raising systems in comparison with cage rearing systems (P<0.05). No differences (P>0.05) were detected between both rearing systems for MUFA, PUFA, and PUFA:SFA ratios with thigh muscles. SFA in thigh muscle was significantly (P<0.05) higher in cage rearing systems compared with backyard raising systems.
In conclusion, using breast and thigh muscle meats from old laying hens as functional foods or investigating impact assessment on the improvement of farm management system may serve as a good management practice to encourage producers.