Currently, the Korea Atomic Energy Research Institute (KAERI) is planning to build the Ki-Jang Research Reactor (KJRR) in Ki-Jang, Busan. It is important to safely dispose of low-level radioactive waste from the operation of the reactor. The most efficient way to treat radioactive waste is cement solidification. For a radioactive waste disposal facility, cement solidification is performed based on specific waste acceptance criteria such as compressive strength, free-standing water, immersion and leaching tests. Above all, the leaching test is important to final disposal. The leakage of radioactive waste such as 137Cs causes not only regional problems but also serious global ones. The cement solidification method is simple, and cheaper than other solidification methods, but has a lower leaching resistance. Thus, this study was focused on the development of cement solidification for an enhancement of cesium leaching resistance. We used Zeolite and Loess to improve the cesium leaching resistance of KJRR cement solidification containing simulated KJRR liquid waste. Based on an SEM-EDS spectrum analysis, we confirmed that Zeolite and Loess successfully isolated KJRR cement solidification. A leaching test was carried out according to the ANS 16.1 test method. The ANS 16.1 test is performed to analyze cesium ion concentration in leachate of KJRR cement for 90 days. Thus, a leaching test was carried out using simulated KJRR liquid waste containing 3000 mg·L-1 of cesium for 90 days. KJRR cement solidification with Zeolite and Loess led to cesium leaching resistance values that were 27.90% and 21.08% higher than the control values. In addition, in several tests such as free-standing water, compressive strength, immersion, and leaching tests, all KJRR cement solidification met the waste acceptance or satisfied the waste acceptance criteria for final disposal.
아연(zinc) 분말은 철의 부식을 막아주는 희생양극의 기능으로 자동차, 선박 및 철구조물의 부식을 방지하 는데 널리 사용되고 있다. 그러나 아연 분말은 높은 비중 때문에 수지나 용매 내에서 분산성이 저하되고 빠르게 침전이 일어나는 단점을 가진다. 본 연구에서는 실리카(SiOx)를 미세 아연분말의 표면에 코팅함으로써 아연분말의 물성 및 기능을 개선하고자 하였다. 아연분말의 실리카 표면코팅은 졸-겔법을 사용하였고 SEM/EDS의 표면 및 성분분석과 TEM 단면분석을 통하여 불순물이 잔존하지 않는 실리카 코팅이 성공적으로 형성됨과 그 코팅의 두께를 확인 할 수 있었다. 한편 코팅공정의 반복회수와 평균입도 변화와의 관계를 측정하여 2회까지의 반복코팅이 분산안정성을 유지하는데 효과적임을 확인하였다. 이 밖에 실리카 코팅 아연분말의 진비중(true density) 측정을 통해 코팅 공정에 의해 비중이 20% 이상 감소함을 확인하였고 제타포텐셜 측정으로 실리카 코팅에 의해 아연분말의 분산안정성이 4배까지 증가함을 확인하였다. 마지막으로 질산수용액 담지를 통해 실리카 코팅 아연분말의 내산성 향상 또한 확인하였다. 따라서 본 연구에서 제조된 실리카 코팅 아연분말은 방청 안료의 원료로 적합할 것으로 기대된다.
Gas hydrate (GH)-based desalination process have a potential as a novel unit desalination process. GHs are nonstoichiometric crystalline inclusion compounds formed at low temperature and a high pressure condition by water and a number of guest gas molecules. After formation, pure GHs are separated from the remaining concentrated seawater and they are dissociated into guest gas and pure water in a low temperature and a high pressure condition. The condition of GH formation is different depending on the type of guest gas. This is the reason why the guest gas is a key to success of GH desalination process. The salt rejection of GH based desalination process appeared 60.5-93%, post treatment process is needed to finally meet the product water quality. This study adopted reverse osmosis (RO) as a post treatment. However, the test about gas rejection by RO process have to be performed because the guest gas will be dissolved in a GH product (RO feed). In this research, removal potential of dissolved gas by RO process is performed using lab-scale RO system and GC/MS analysis. The relation between RO membrane characteristics and gas removal rate were analyzed based on the GC/MS measurement.
Gas hydrate desalination process is based on a liquid to solid (Gas Hydrate, GH) phase change followed by a physical process to separate the GH from the remaining salty water. The GH based desalination process show 60.5-90% of salt rejection, post treatment like reverse osmosis (RO) process is needed to finally meet the product water quality. In this study, the energy consumption of the GH and RO hybrid system was investigated. The energy consumption of the GH process is based on the cooling and heating of seawater and the heat of GH formation reaction while RO energy consumption is calculated using the product of pressure and flow rate of high pressure pumps used in the process. The relation between minimum energy consumption of RO process and RO recovery depending on GH salt rejection, and (2) energy consumption of electric based GH process can be calculated from the simulation. As a result, energy consumption of GH-RO hybrid system and conventional seawater RO process (with/without enregy recovery device) is compared. Since the energy consumption of GH process is too high, other solution used seawater heat and heat exchanger instead of electric energy is suggested.
In this study, five sediments samples were collected at near Hansan island. These samples were characterized whether they were contaminated or not. For this purpose, physico-chemical properties and metal contents were analyzed. From the elemental analyses, XRD, and XRF analyses, all samples showed similar elements, oxides, and minerals. In general, Cd, Cr, Ni, Pb, and Zn concentrations were below the contamination standards. Concentrations of Cu, however, exceeded the contamination standards of USEPA and Ontario sediment quality guidelines for some sampling sites. Ignition losses of the all samples were greater than 8%, which is a value indicating whether the sample is heavily polluted or moderately polluted. All the samples were classified as heavily polluted due to the high value of ignition loss. Therefore, sediments of the near Hansan island are required for periodic and strict management to prevent any harmful effects to the surrounding environments.
This paper presents the results of the electrochemical treatment of chemical oxygen demand(COD) and total nitrogen(T-N) compounds in the wastewater generated from flue gas desulfurization process by using a lab-scale electrolyzer. With the increase in the applied current from 0.6 Ah/L to 1.2 Ah/L, the COD removal efficiency rapidly increases from 74.5% to 96%, and the T-N removal efficiency slightly increases from 37.2% to 44.9%. Therefore, it is expected that an electrochemical treatment technique will be able to decrease the amount of chemicals used for reducing the COD and T-N in wastewater of the desulfurization process compared to the conventional chemical treatment technique.
This study was conducted to determine physico-chemical properties and degree of heavy metal contamination of sediments collected at Tongyong channel. From XRF and XRD analyses, all samples consisted of similar oxides and minerals. TOC ranged between 1.73 and 2.79%. Ignition loss ranged between 9.31 and 12.28%. Degree of heavy metal contamination of sediments was performed based on standards proposed by USEPA, Ontario sediment quality guidelines, index of geoaccumulation and total enrichment factor. In summary, sediment T9 was classified as moderately contaminated region based on standards of USEPA, index of geoaccumulation and total enrichment factor. In addition, T7 and T8 were classified as moderately contaminated region based on only USEPA standard. However, concentrations of Cu and Zn of T7 and T8 gradually increased to the level of T9 where it was close to Tongyong harbor. Therefore, the regions of T7, T8 and T9 need to be monitored and if possible required to remediate contaminated sediments.
The purpose of this study was to determine optimum conditions for the cultivation of Tetraselmis suecica (T. suecica) under illumination of four different types of LEDs (i.e., blue, red, white, and mixed). Initial cell concentration was 4×104 cells/mL and temperature of reactor was maintained between 21-240C. Specific growth rates were 0.72 day-1(white), 0.58 day-1(red), 0.49 day-1(mixed), and 0.49 day-1(blue). Thus, white LEDs was used for the cultivation of T. suecica. Tests with white LEDs under different light intensity, which was conducted to determine optimum light intensity of white LEDs, showed that 9,000 lux of illumination resulted in fastest cell growth and greatest cell concentrations. To avoid shadow effects by dense cell populations, aeration was performed. Cell concentration increased 3.8 times when aeration was used.
The electrochemical carbon dioxide reduction to produce acetaldehyde, methanol and ethanol is investigated by using perovskite type electrode (La0.9Sr0.1CuO3). The experiments were performed under 100 mA/㎠ and -2 to -2.5 V vs. Ag/AgCl. The highest faradaic efficiencies for methanol, ethanol, acetaldehyde were 11.6, 15.3, and 6.2%, respectively. The experimental data demonstrated that the capability of the perovskite type oxide for the electrode of electrochemical carbon dioxide reduction to produce alcohols was superior to other metal electrode.
A dual-porosity filmed agglomerate model for the porous cathode of the molten carbonate fuel has been investigated to predict the cell performance. A phenomenological treatment of molecular, kinetic and electrode parameters has been given. The major physical and chemical phenomena being modeled include mass transfer, ohmic losses and reaction kinetics at the electrodeelectrolyte interface. The model predicts steady-state cell performance given the above conditions that characterize the state of the electrode. Quasi-linearization and finite difference techniques are used to solve the coupled nonlinear differential equations. Also, the effective surface area of electrode pore was obtained by mercury porosimeter. The results of the investigation are presented in the form of plots of overpotential vs. current density with varied the electrode material, gas composition and mechanism. The predicted polarization curves are compared with the empirical data from 1 ㎠ cell. A fair correspondence is observed.
In the development of Molten Carbonate Fuel Cell, one of the serious problems is the dissolution of cathode material. Therefore, the development of the alternative cathode which is stable in molten carbonate is needed. In this research, the LiCoO2 was chosen as alternative cathode material. LiCoO2 powder was synthesized by high temperature calcination method and by citrate sol-gel method. And its structure and physical characteristics were analyzed by XRD, IR TGA and porosimeter. The conductivity and solubility of LiCoO2 electrode were also measured Homogeneous LiCoO2 powder was obtained by citrate sol-gel method at 445℃, however, obtained above 750℃ by high temperature calcination method. Homogeneous particle size distribution and fine powder were obtained by the citrate sol-gel method. LiCoO2 electrode showed higher electric conductivity (1.7 Ω^-1 ㎝^1) than NiO (0.1 Ω^-1 ㎝^-1) at 650℃. The solubilities of LiCoO2 electrode in electrolyte were varies 0.6 to 1.0 ppm during 200 hours. So, the solubilities of LiCoO2 were much lower than that of NiO.