In vitro digestibility and protein digestibility corrected amino acid scores (PDCAAS) were investigated to verify the availability of protein in various Rhizopus oligosporus fermented products of domestic soybean (Glycine max L.) cultivars. Danbaegkong (DBK), Daepung (DP), Daewonkong (DWK), Saedanbaek (SDB), Seonyu (SY), and Cheongja4ho (CJ4) were used as raw samples, which were fermented using commercially available Rhizopus oligosporus for 48 h. All cultivars showed increased crude protein content after fermentation. The crude protein content of DBK and SDB was significantly higher than that of the other samples (55.12% in DBK and 54.22% in SDB) (p<0.001). CJ4 had the highest alanine content of 28.88 mg/g (p<0.001), and no significant difference in cysteine content was detected among the cultivars. In most of the fermented samples, the in vitro digestibility was 0.9 or higher, indicating high protein in the fermented samples. However, it is considered that restrictions on digestion are low. In DWK, the amino acid content and PDCAAS, which together indicate protein quality, were 0.917 and 0.855, respectively, confirming that it was the best cultivar to provide the raw material for fermentation. In conclusion Rhizopus oligosporus fermented soybean products can be considered a prospective source of protein with high utility value.
바이오산업의 발전으로 의약품, 식품 등의 생산 과정의 분리/정제 공정에 사용되어 왔던 기존의 컬럼 크로마토그 래피를 대체하여 더 높은 처리효율을 갖는 막 크로마토그래피가 부상하고 있다. 본 연구에서는 서로 다른 기공 크기의 두 가 지 상용 셀룰로오스 아세테이트(Cellulose acetate, CA) 분리막을 탈아세틸화 과정을 통해, 리간드의 개질이 용이한 다공성 재 생 셀룰로오스 지지체를(Regenerated cellulose, RC) 제조하였다. 음이온 교환능을 부여하고자 grafting을 수행하였으며, 구체 적으로는 UV 중합법을 통해 4차 암모늄을 포함하는 음이온 교환 리간드(MAPTAC)를 부착하여 음이온 교환용 흡착막을 제 조하였다. 단백질 흡착 용량은 정적 흡착 용량(Static binding capacity, SBC)시험을 통해 총 단백질 흡착 용량을 측정했고, 동 적 흡착 용량(Dynamic binding capacity, DBC)을 측정하여 상용막과 비교 평가하였다. 성능 평가 결과 단백질 흡착량은 넓은 표면적에 의해 리간드 밀도가 높은, 기공 크기가 작은 순서로 높게 측정되었고, 상용 CA분리막을 탈아세틸화하고 리간드를 부착시킨 분리막(RC 0.8 + MAPTAC 43.69 mg/ml, RC 3.0 + MAPTAC 36.33 mg/ml)이 상용 막 크로마토그래피 제품(28.38 mg/ml) 대비 높은 흡착 용량을 보였다.
Single OLED and tandem OLED was manufactured to analyze the electroluminescence characteristics of DC driving, AC driving, and full-wave rectification driving. The threshold voltage of OLED was the highest in DC driving, and the lowest in full-wave rectification driving due to an improvement of current injection characteristics. The luminance at a driving voltage lower than 10.5 V (8,534 cd/m2) of single OLED and 20 V (7,377 cd/m2) of a tandem OLED showed that the full-wave rectification drive is higher than that of DC drive. The luminous efficiency of OLED is higher in full-wave rectification driving than in DC driving at low voltage, but decrease at high voltage. The full-wave rectification power source may obtain higher current density, higher luminance, and higher current efficiency than the AC power source. In addition, it was confirmed that the characteristics of AC driving and full-wave rectification driving can be predicted from DC driving characteristics by comparing the measured values and calculated values of AC driving and full-wave rectification driving emission characteristics. From the above results, it can be seen that OLED lighting with improved electroluminescence characteristics compared to DC driving is possible using full-wave rectification driving and tandem OLED.
This paper proposes a mathematical model that can calculate the luminescence characteristics driven by alternating current (AC) power using the current-voltage-luminance (I-V-L) properties of organic light emitting devices (OLED) driven by direct current power. Fluorescent OLEDs are manufactured to verify the model, and I-V-L characteristics driven by DC and AC are measured. The current efficiency of DC driven OLED can be divided into three sections. Region 1 is a section where the recombination efficiency increases as the carrier reaches the emission layer in proportion to the increase of the DC voltage. Region 2 is a section in which the maximum luminous efficiency is stably maintained. Region 3 is a section where the luminous efficiency decreases due to excess carriers. Therefore, the fitting equation is derived by dividing the current density and luminance of the DC driven OLED into three regions, and the current density and luminance of the AC driven OLED are calculated from the fitting equation. As a result, the measured and calculated values of the AC driving I-V-L characteristics show deviations of 4.7% for current density, 2.9% for luminance, and 1.9% for luminous efficiency.
This study was conducted to investigate the antioxidant activities on hydropoic-cultured ginseng roots (HGR) and leaves (HGL). The samples were lyophilized, extracted with 80% ethanol, and then evaluated the antioxidant activities compare with conventional- cultured ginseng. Total polyphenol content of ginseng, HGR, and HGL were 128.85±0.41, 115.74±1.28, and 282.15±5.15 mg/g, respectively. The DPPH radical scavenging activity(IC50) was the highest value of 6.47±0.13 mg/mL in the HGL. The ABTS radical scavenging activity was the highest value of 29.37±0.37 mg AA eq/g in HGL, and ginseng and HGR were 10.23±0.49 and 8.18±0.37 mg AA eq/g, respectively. The reducing power of ginseng, HGR, and HGL were 0.56±0.01, 0.53±0.01, and 0.68±0.01, respectively. Chelating effect was the highest value of 92.65±3.42% in HGL. The results of this study suggest that antioxidant activities in hydropoic-cultured ginseng leaves could have significant health benefits.
Red-emitting Eu3+-activated (Y0.95-xAlx)VO4 (0<x≤0.12) nanophosphors with the particle size of ~30nm and thehigh crystallinity have been successfully synthesized by a hydrothermal reaction. In the synthetic process, deionized water asa solvent and ethylene glycol as a capping agent were used. The crystalline phase, particle morphology, and thephotoluminescence properties of the excitation spectrum, emission intensity, color coordinates and decay time, of the prepared(Y0.95-xAlx)VO4:Eu3+ nanophosphors were compared with those of the YVO4:Eu3+. Under 147nm excitation, (Y0.95-xAlx)VO4nanophosphors showed strong red luminescence due to the 5D0-7F2 transition of Eu3+ at 619nm. The luminescence intensityof YVO4:Eu3+ enhanced with partial substitution of Al3+ for Y3+ and the maximum emission intensity was accomplished at theAl3+ content of 10mol%. By the addition of Al3+, decay time of the (Y,Al)VO4:Eu3+ nanophosphor was decreased in comparisonwith that of the YVO4:Eu3+ nanophosphor. Also, the substitution of Al3+ for Y3+ invited the improvement of color coordinatesdue to the increase of R/O ratio in emission intensity. For the formation of transparent layer, the red nanophosphors werefabricated to the paste with ethyl celluloses, anhydrous terpineol, ethanol and deionized water. By screen printing method, atransparent red phosphor layer was formed onto a glass substrate from the paste. The transparent red phosphor layer exhibitedthe red emission at 619nm under 147nm excitation and the transmittance of ~80% at 600nm.
본 논문에서는 컨테이너 영상의 식별자를 검출하는 알고리즘을 제안한다. 제안 방법에서는 먼저 형태학적 필터를 이용하여 컨테이너 영상이 앞면 또는 뒷면 영상인지를 판단한다. 컨테이너 영상이 앞면일 경우 수직,수평 히스토그램을 비교하여 식별자 영역을 추정하고, 컨테이너 영상이 뒷면일 경우 3번째 손잡이의 위치와 수평 히스토그램을 이용하여 식별자 영역을 추정한다. 그리고 추정된 식별자 영역을 이진화한 다음, 최종적으로 8방향 윤곽선 추적 알고리즘과 식별자 조건을 이용하여 식별자를 검출하였다. 많은 다양한 컨테이너 영상에 대한 실험결과, 제안된 방법이 앞면 컨테이너 영상에 대해서는 기존 방법과 비슷한 성능을 나타내지만 기존 방법으로 해결하지 못한 뒷면 컨테이너 영상에 대해서도 우수한 식별자 검출 성능을 나타내었다.
본 논문에서는 컨테이너 영상의 앞/뒷면을 판별하는 알고리즘을 제안한다. 제안 방법에서는 컨테이너 뒷면 손잡이 부분의 존재 유무를 앞/뒷면 영상의 판별 기준으로 정하고, 손잡이 영역이 컨테이너 표면 배경보다 밝다는 가정 하에 형태학적 필터를 사용하여 손잡이 영역만을 추출한다. 그리고 컨테이너 영상의 손잡이 영역의 밝기를 수직으로 누적하여 피크를 찾고 피크의 크기와 피크 간의 거리를 이용하여 컨테이너 영상의 앞/뒷면을 판별하였다. 많은 다양한 컨테이너 영상에 대한 실험 결과, 제안된 방법이 우수한 판별 성능을 나타내었다.
A new colored soybean variety ‘Jungmo3005’ was developed as a breeding parent. ‘Cheongjakong’ and ‘Geomjeongkong3’ were crossed in 2000. F1 and F2 populations were grown for 2 years and selected by pedigree method from F3 to F5. The preliminary yield trial (PYT) and advanced yield trial (AYT) were conducted from 2006 to 2007, and regional yield trial (RYT) in 9 regions was conducted from 2008 to 2010. ‘Jungmo3005’ is determinate, white flower, green cotyledon, green spherical seed and yellow hilum. Flowering date and maturing date were July 30 and Oct. 7, respectively. Other quantitative characteristics of ‘Jungmo3005’ were similar to ‘Cheongdu1’, but it was more tolerant to lodging and shattering than ‘Cheongdu1’ at RYT field and indoor test. Although ‘Jungmo3005’ showed symptom of mosaic disease in inoculation test at greenhouse, it had high level of resistance to soybean mosaic virus and bacterial pustule diseases at field. The yield of tofu of ‘Jungmo3005’ was more than that of ‘Cheongdu1’. The mean yield of ‘Jungmo3005’ in RYT was 256kg/10a which was 97% of the yield of ‘Cheongdu1’. ‘Jungmo3005’ is expected to be widely used as a breeding parent to cross with other varieties and lines for creating colored soybean cultivars with tolerance to lodging, shattering and bacterial pustule.
Soybean cultivar ‘Seonpung’ was developed for soy-paste and tofu. Suwon 224 and YS1325-3S-2 were crossed in 2003 and selected from F3 to F5 by pedigree method. The preliminary yield trial (PYT) and advanced yield trial (AYT) were conducted from 2009 to 2010, and regional yield trial (RYT) in twelve regions was conducted from 2011 to 2013. In RYT, ‘Seonpung’ was stable in variable environments and a high yield cultivar. ‘Seonpung’ is determinate, white flower, yellow spherical seed and yellow hilum. Flowering date and maturity date were Aug. 5 and Oct. 19, respectively. Plant height was similar to ‘Daewonkong (standard cultivar)’. However ‘Seonpung’ has higher node number (16) and seed weight (25.9g/100-seed weight) than ‘Daewonkong’ (14 and 24.2g/100-seed weight). ‘Seonpung’ is resistant to root rot, and it also has high level of resistance to bacterial pustule and soybean mosaic virus. The yield of tofu of ‘Seonpung’ was 241%, and noticeably lighter, and solidity was higher than ‘Daewonkong’. Soybean malt scent, fermented soybean yield and γ-polyglutamic acid (γ-PGA) of ‘Seonpung’ were 4, 181% and 31.7㎎/g. The yield in adaptable regions was 340kg/10a (21% increase compared to ‘Daewonkong’). ‘Seonpung’ is expected to be cultivated and used widely for soy-paste and tofu. (Registration number: 5931)
A soybean cultivar for soy-paste, ‘Uram’, was developed from the cross between ‘Suwon190’ and ‘SS99244’ (Shinpaldal-2 X T243) by soybean breeding team at the National Institute of Crop Science (NICS) in 2010. A promising line, SS00232-B-B-3SSD-9-4-1-1, was selected and designated as the name of ‘Milyang188’. It was prominent and had good result from regional adaptation yield trials (RYT) in southern area of Korea for three years from 2008 to 2010 and released as the name of ‘Uram’. It has a determinate growth habit, white flower, gray pubescence, yellow seed coat, yellow hilum, spherical seed shape and large seed (25.8 grams per 100 seeds). ‘Uram’ was found to be resistant to bacterial pustule and soybean mosaic virus, the major soybean diseases in Korea. The lowest pod height of ‘Uram’ was 19cm and it will be able to reduce seed loss during mechanical harvesting. The average yield of ‘Uram’ is 3.27 ton per hectare in southern double cropping area. Through these results, ‘Uram’ is soybean cultivar that is favorable for mechanization harvesting, resistant to diseases and highly yield.
Thirty-eight Pea (Pisum sativum L.) genotypes were screened to identify varieties to be suitable for sprout. Based on seed yield and sprout qualities such as whole length and sprout yield, five genotypes (PI269803, PI343278, PI343283, PI343300 and PI 343307) were primarily selected as candidates for pea sprouts. In order to determine optimal cultivation condition for pea sprouting, growth characteristics were investigated according to the change of germination temperature and days for sprouting. Whole length and hypocotyl length were observed to increase as a time dependent manner at each tested temperature (20, 23, and 25°C). However, whole length, hypocotyl length, and sprout yield were highly increased at 23°C compared to 20 and 25°C. Especially, PI269803 and PI343300 showed higher sprout yield than the others. In addition, the effect of the change of germination temperature on antioxidant properties was estimated by measuring total phenolic content (TPC) and free radical scavenging activity (DPPH and ABST activity). TPC and DPPH/ABST activities of PI269803 and PI343300 were higher at 23°C than at 20 and 25°C, while antioxidant properties of PI343278 and PI343283 were decreased in a temperaturedependent manner. The results show a high degree of correlation between TPC and antioxidant activities and suggest that the temperature change for pea sprouting could be responsible for antioxidant properties. Taken together, these results provide optimal cultivation conditions for pea sprouting and suggest that PI269803 and PI343300 with high sprout yield and antioxidant properties could be used for pea sprouts.
This paper presents the results of the electrochemical treatment of chemical oxygen demand(COD) and total nitrogen(T-N) compounds in the wastewater generated from flue gas desulfurization process by using a lab-scale electrolyzer. With the increase in the applied current from 0.6 Ah/L to 1.2 Ah/L, the COD removal efficiency rapidly increases from 74.5% to 96%, and the T-N removal efficiency slightly increases from 37.2% to 44.9%. Therefore, it is expected that an electrochemical treatment technique will be able to decrease the amount of chemicals used for reducing the COD and T-N in wastewater of the desulfurization process compared to the conventional chemical treatment technique.