검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        1996.10 KCI 등재 서비스 종료(열람 제한)
        A dual-porosity filmed agglomerate model for the porous cathode of the molten carbonate fuel has been investigated to predict the cell performance. A phenomenological treatment of molecular, kinetic and electrode parameters has been given. The major physical and chemical phenomena being modeled include mass transfer, ohmic losses and reaction kinetics at the electrodeelectrolyte interface. The model predicts steady-state cell performance given the above conditions that characterize the state of the electrode. Quasi-linearization and finite difference techniques are used to solve the coupled nonlinear differential equations. Also, the effective surface area of electrode pore was obtained by mercury porosimeter. The results of the investigation are presented in the form of plots of overpotential vs. current density with varied the electrode material, gas composition and mechanism. The predicted polarization curves are compared with the empirical data from 1 ㎠ cell. A fair correspondence is observed.
        2.
        1996.08 KCI 등재 서비스 종료(열람 제한)
        In the development of Molten Carbonate Fuel Cell, one of the serious problems is the dissolution of cathode material. Therefore, the development of the alternative cathode which is stable in molten carbonate is needed. In this research, the LiCoO2 was chosen as alternative cathode material. LiCoO2 powder was synthesized by high temperature calcination method and by citrate sol-gel method. And its structure and physical characteristics were analyzed by XRD, IR TGA and porosimeter. The conductivity and solubility of LiCoO2 electrode were also measured Homogeneous LiCoO2 powder was obtained by citrate sol-gel method at 445℃, however, obtained above 750℃ by high temperature calcination method. Homogeneous particle size distribution and fine powder were obtained by the citrate sol-gel method. LiCoO2 electrode showed higher electric conductivity (1.7 Ω^-1 ㎝^1) than NiO (0.1 Ω^-1 ㎝^-1) at 650℃. The solubilities of LiCoO2 electrode in electrolyte were varies 0.6 to 1.0 ppm during 200 hours. So, the solubilities of LiCoO2 were much lower than that of NiO.