The purpose of this study was to confirm the applicability of aerobic granular sludge (AGS) in the advanced sewage treatment process. Simulated influent was used in the operation of a laboratory scale reactor. The operation time of one cycle was 4 h and the reactor was operated for six cycles per day. The volume exchange ratio was 50%. The influent was injected in divisions of 25% to increase the removal efficiency of nitrogen in every cycle. As a result, the removal efficiencies of CODCr and TN in this reactor were 98.2% and 76.7% respectively. During the operation period, the AGS/MLVSS concentration ratio increased from 70.0% to 86.7%, and the average SVI30 was 67 mL/g. The SNR and SDNR were 0.073 0.161 kg NH4 +-N/kg MLVSS/day and 0.071 0.196 kg NO3 --N/kg MLVSS/day respectively. These values were higher or similar to those reported in other studies. The operation time of the process using AGS is shorter than that of the conventional activated sludge process. Hence, this process can replace the activated sludge process.
The objective of this study was to estimate air quality trends in the study area by surveying monthly and seasonal concentration trends. To do this, the mass concentration of PM10 samples and the metals, ions, and total carbon in the PM10 were analyzed. The mean concentration of PM10 was 33.9 ㎍/㎥. The composition of PM10 was 39.2% ionic species, 5.1% metallic species, and 26.6% carbonic species (EC and OC). Ionic species, especially sulfate, ammonium, and nitrate, were the most abundant in the PM10 and had a high correlation coefficient with PM10. Seasonal variation of PM10 showed a similar pattern to those of ionic and metallic species. with high concentration during the winter and spring seasons. PM10 showed high correlation with the ionic species NO3 - and NH4 +. In addition, NH4 + was highly correlated with SO4 2- and NO3 -. We obtained four factors through factor analysis and determined the pollution sources using the United States Environmental Protection Agency(U.S. EPA) pollution profile. The first factor accounted for 51.1% of PM10 from complex sources, that is, soil, motor vehicles, and secondary particles: the second factor indicated marine sources; the third factor, industry-related sources; and the last factor, heating-related sources. However, the pollution profile used in this study may be somewhat different from the actual situation in Korea because it was from US EPA. Therefore, to more accurately estimate the pollutants present, it is necessary to create a pollution profile for Korea.
This study was conducted to determine the effects of combination of air temperature and soil water content on the growth, physiological disorder rate, and yield of hot peppers. The study was carried out in a typical plastic house (open on one side and with ventilation fans on the other side), which was maintained with gradient air temperature (maximum difference in air temperature: 6°C). The deficit irrigation (DI) treatment commenced 65 days after transplanting. The height of plant and fresh and dry weights of the stem increased at high air temperature (ambient + 6°C, extreme high temperature; EHT). Furthermore, the leaf area decreased significantly with the DI treatment. There were no significant differences in the stem diameter, number of branches, and fresh and dry weights of the leaves among all the treatments. The net photosynthesis rate of the full irrigation (FI) treatment was higher than that of the DI treatment. The photosynthesis rate at ambient air temperature was 19.7 μmol CO2m-2·s-1, the highest among all the treatments; however, the photosynthesis rate of the EHT treatment decreased by 60% (12.3 μmol CO2m-2·s-1). Additionally, the formation of guard cells in the leaf was abnormal with the EHT treatment, and there was a decrease in translocation efficiency. The effects of air temperature treatment were more pronounced on the physiological disorder rate and yield. The physiological disorder rate of the EHT treatment was the highest under the DI treatment condition. The yield of the AFI (ambient air temperature with full irrigation) treatment was 3,771 kg/10a, the highest among all the treatments; however, the yield of the EHT treatment with DI and FI was 1,282 and 1,327 kg/10a, respectively. These results indicate that growth and physiological disorder rate improved with the EHT treatment; however, there was a decrease in yield. Furthermore, the formation of guard cells was abnormal and malfunctional.
In this study, the organic matter of effluents from sewage treatment plants, located in the Nakdong watershed was investigated. Regression equations were computed using treated sewage data to convert the chemical oxygen demand(COD) concentrations, which are mostly available from an open database, into total organic carbon(TOC) concentrations. The average concentration of organic matter in the sewage treatment plant effluents were 2.2 16.8 mg/L for COD and 3.4 14.3 mg/L for TOC. The concentrations of COD were positively correlated with the TOC concentrations. The correlation between COD and TOC was relatively high, at 0.865(p<0.01). Based on these results, regression analysis was conducted. The regression equation for TOC was 1.651×CODMn-0.084 (R2=0.84). Furthermore, organic matter-related databases for more sewage treatment plants need to be built in order to establish TOC standards and manage the water quality.
With rapid growth of the one-person households, this study focused on the psychological effects of pet plant gardening, one of the new trend of gardening among them. To clarify the psychological influences of pet plant gardening, 30 university students conducted gardening of pet plants in 90 days and the psychological effects was measured by the standardization personality inventory test before and after gardening. As results, pet plant gardening showed the effects of decreasing depression feeling of all participants, and the effects was significant in female than male. Pet plants gardening led to change females' personality more actively and more leadingly. Therefore, this data verified the positive effects in psychologically and induced personality showed pet plants gardening induced the positive effects the aspects of psychology and personality.
Water status of intact plants has been optically estimated by measuring reflectance at the wavelengths 1,450 nm and 1,900 nm based on their signal strengths. Although another water band at 970 nm is considered to have very small signals, the band apparently lies within the detection range of inexpensive spectrometer and plain charge-coupled device (CCD) camera used in wild fire studies. However measurement of the reflectance at 970 nm has been rarely applied to estimate the water status of dead plant materials such as fallen branch, twig, and leaf. To test the possibility of applying water reflectance at 970 nm to estimate the water content (WC) in leaf litter, the reflectance in various WC values were measured in the leaf litter of three Quercus species (Q aliena, Q aliena, Q mongolica, and Quercus variabilis). The results showed that the WC in the leaf litter can be determined by reflectance water index (WI) in the three Quercus species (WC=1,450×WI-1,378.8, r=0.865). However, there was no interaction effect in the relationship between WI and WC among the litter of the three Quercus species.