The objective of this study was to estimate air quality trends in the study area by surveying monthly and seasonal concentration trends. To do this, the mass concentration of PM10 samples and the metals, ions, and total carbon in the PM10 were analyzed. The mean concentration of PM10 was 33.9 ㎍/㎥. The composition of PM10 was 39.2% ionic species, 5.1% metallic species, and 26.6% carbonic species (EC and OC). Ionic species, especially sulfate, ammonium, and nitrate, were the most abundant in the PM10 and had a high correlation coefficient with PM10. Seasonal variation of PM10 showed a similar pattern to those of ionic and metallic species. with high concentration during the winter and spring seasons. PM10 showed high correlation with the ionic species NO3 - and NH4 +. In addition, NH4 + was highly correlated with SO4 2- and NO3 -. We obtained four factors through factor analysis and determined the pollution sources using the United States Environmental Protection Agency(U.S. EPA) pollution profile. The first factor accounted for 51.1% of PM10 from complex sources, that is, soil, motor vehicles, and secondary particles: the second factor indicated marine sources; the third factor, industry-related sources; and the last factor, heating-related sources. However, the pollution profile used in this study may be somewhat different from the actual situation in Korea because it was from US EPA. Therefore, to more accurately estimate the pollutants present, it is necessary to create a pollution profile for Korea.