The solid-phase extractant PS-D2EHPA/TBP was prepared by immobilizing two extractants D2EHPA and TBP in polysulfone (PS). The prepared PS-D2EHPA/TBP was characterized by using fourier transform infrared spectrometer (FTIR) and scanning electron microscopy (SEM). The removal of Cu(II) from aqueous solution was investigated in batch system. The experiment data were obeyed the pseudo-second-order kinetic model. Equilibrium data were well fitted by Langmuir model and the removal capacity of Cu(II) by solid extractant PS-D2EHPA/TBP obtained from Langmuir model was 3.11 mg/g at 288 K. The removal capacity of Cu(II) was increased according to increasing pH from 2 to 6, but the removal capacity was decreased below pH 3 remarkably.
Sustainable and eco-friendly polymers, natural polymers, bio-based polymers, and degradable polyesters, are of growing interest because of environmental concerns associated with waste plastics and emissions of carbon dioxide from preparation of petroleum-based polymers. Degradable polymers, poly(butylene adipate-co-terephthalate) (PBAT), poly(propylene carbonate) (PPC), and poly(L-lactic acid) (PLLA), are related to reduction of carbon dioxide in processing. To improve a weak mechanical property of a degradable polymer, a blending method is widely used. This study was forced on the component separation of degradable polymer blends for effective recycling. The melt-mixed blend films in a specific solvent were separated by two layers. Each layer was analysed by FT-IR, DSC, and contact angle measurements. The results showed that each component in the PPC/PLLA and PPC/PBAT blends was successfully separated by a solvent.
This study was aimed to determine the effect of basal application of Effective Microorganisms (EM) on the grow and yield of cucumber. For treatments, the EM was applied to soil with fertilizer composed with N-P2O5-K2O-manure (24.0-16.4-23.8-2,000kg) in the 1.0 strength (defined as EM+1S), 2/3 strength (defined as EM+2/3S), 1/2 strength (defined as EM+1/2S), without fertilizer (defined as EM), or only fertilizer in the 1.0 strength (defined as 1S). In result, there was no significant differences of organic substance content and pH with the EM treatment. While the EC (Electric conductivity) concentration was decreased, plant-available P (phosphorus) was markedly increased. Chlorophyll content was highest in the treatment of EM+standard application rate for both semi-forcing and retarding culture. In contrast, no significant difference was found in plant height and internode length under the fertilizer treatment. Weekly harvested number of cucumber was highest at the treatment of EM+standard application for the semi-forcing culture, while it was 3.6 at the EM+1/2 application for the retarding culture. Weekly yield was greatest at the EM+standard application treatment and decreased with the decrease of fertilizer application rate. In addition, weekly yield was significantly reduced in the treatment of EM . There was no significant difference in yields by production time with the fertilizer applications?. Yield was increased with temperature for the semi-forcing culture, while consistent pattern was maintained for the retarding culture.
This study aimed to evaluate the effects of probiotics as manure additives on pathogen, mineral, carbon dioxide and methane emissions in pig slurry as a function of time and provide information about the importance of pig slurry management to pig producers. An experiment was a completely randomized design and four treatments: CON: no treatment (5 kg pig slurry), T1: 5 kg pig slurry + 0.2% bacillus subtilis, T2: 5 kg pig slurry + 0.2% yeast, T3: 5 kg pig slurry + 0.2% actinomycetales. All treatments were replicated three times. The results information that is analyzed includes the following: First, in spite of the lack of statistically significant differences, pH values and carbon dioxide were lowered (P < 0.05) in all probiotic treatments compared with the controls as a function of time. Second, all probiotic treatments had no effect on Salmonella enterica, mineral, and methane emission. The results of this study indicated that addition of 0.2% probiotic to pig slurry resulted in lower pH and carbon dioxide emissions, and carbon dioxide and methane emitted from pig slurry is not listed as noxious gases.
In this study, the regional climate (WRF) and air quality (CMAQ) models were used to simulate the effects of future urban growth on surface ozone concentrations in the Seoul metropolitan region (SMR). These analyses were performed based on changes in ozone concentrations during ozone seasons (May–June) for the year 2050 (future) relative to 2012 (present) by urban growth. The results were compared with the impacts of RCP scenarios on ozone concentrations in the SMR. The fractions of urban in the SMR (25.8 %) for the 2050 were much higher than those (13.9 %) for the 2012 and the future emissions (e.g., CO, NO, NO2, SO2, VOC) were increased from 121 % (NO) to 161.3 % (NO2) depending on emission material. The mean and daily maximum 1-h ozone in the SMR increased about 3 - 7 ppb by the effect the RCP scenarios. However, the effect of urban growth reduced the mean ozone by 3 ppb in the SMR and increased the daily maximum 1-h ozone by 2 - 5 ppb over the northeastern SMR and around the coastline. In particular, the ozone pollution days exceeding the 1-h regulatory standard (100 ppb) were far more affected by urban growth than mean values. As a result, the average number of days exceeding the 1-h regulatory standard increased up to 10 times.
Removal characteristics of Cu(II) ions by solid-phase extractant immobilized D2EHPA and TBP in PVC were investigated. Cu(II) ion concentrations in the solution and removal capacity of Cu(II) ion according to operation time were compared. The lower the initial concentration of Cu(II) ion in aqueous solution was, the removal capacity of Cu(II) ion by solid-phase extractant was increased relatively. The bigger the initial concentration of Cu(II) ion was, the removal capacity of Cu(II) ion was increased relatively. The pseudo-second-order kinetics according to operation time was showed more satisfying results than the pseudo-first-order kinetics for the removal velocity of Cu(II) ion. The removal capacity of Cu(II) ion was 0.025 mg/g in aqueous solution of pH 2, but the removal capacity of Cu(II) ion was increased to 0.33 mg/g mg/g in aqueous solution of pH 4 according to increasing pH.
The dry weight of mother plants' leaves had the highest increase rate in both NS (single-use) and NS+EM (mixed-use) mixed with NS 0.8 (customary use). In seafood amino acid fertilizer (SAF) application, the increase rate was highest in SAF solution at a 300-fold dilution. Mother plants' crown diameter, plant height, leaf length, leaf width, petiole length and leaf number showed the greatest growth amount when NS 0.8 (customary use) was mixed to NS (single-use) or NS+EM (mixed-use) solution. The growth was highest in SAF solution diluted 300 folds, but lowest in SAF solution diluted 100 folds. Of all inorganic nutrients, excluding sulfur, total amount of nitrogen, available phosphorus, potassium, calcium and magnesium had the highest increase rate in both NS (single-use) and NS+EM (mixed-use) with the treatment of NS 0.8 (customary use). Total nitrogen, in particular, was increased by 3.1% in NS 0.4, 6.0% in NS 0.8, and 4.5% in NS 0.8 with the application of NS+EM at a 500-fold dilution compared to NS alone. Total nitrogen amount showed the highest increase rate in SAF solution diluted 300 folds. Total nitrogen, available phosphorus, calcium, magnesium and EC in soils applied with culture solutions (NS, NS+EM) had increasing tendencies after fertilizer application. The results were comparable to those of SAF treatment. The increase rate of each inorganic nutrient composition declined in soils applied with NS+EM solution diluted 500 folds compared to NS alone.
This study accessed the adsorption characteristics of the 9 trihalomethanes (THMs) on coal-based granular activated carbon (GAC). The breakthrough appeared first for CHCl3 and sequentially for CHBr2Cl, CHBr3, CHCl2I, CHBrClI, CHBr2I, CHClI2, CHBrI2, and CHI3. The maximum adsorption capacity (X/M) for the 9 THMs with apparent breakthrough points ranged from 1,175 μg/g (for CHCl3) to 11,087 μg/g (for CHI3). Carbon usage rate (CUR) for CHCl3 was 0.149 g/day, 5.5 times higher than for CHI3 (0.027 g/day).
The objective of this work was to treat complex mal-odor of food waste with micro-bubbles from enhanced wet scrubber system, where the pilot plant was operated. Micro bubbles from the enhanced reactor of venturi scrubber were successfully generated through the air atomizing process with high velocity more than 60 m/sec and played an important role in the removal of mal-odor. Mal-odor was effectively changed into the micro-bubble and treated with washing chemicals together. Through establishing two series connection of the reactors, 85.2 % removal efficiency of complex mal-odor was obtained in case of average 940 times of input air. 0.35 kg/hr of sulfuric acid, 0.188 kg/hr of sodium hydroxide and 0.043 kg/hr of hypochlorite were injected for chemical washing.
The characteristics of atmospheric dispersion of radioactive material (i.e. 137Cs) related to local wind patterns around the Kori nuclear power plant (KNPP) were studied using WRF/HYSPLIT model. The cluster analysis using observed winds from 28 weather stations during a year (2012) was performed in order to obtain representative local wind patterns. The cluster analysis identified eight local wind patterns (P1, P2, P3, P4-1, P4-2, P4-3, P4-4, P4-5) over the KNPP region. P1, P2 and P3 accounted for 14.5%, 27.0% and 14.5%, respectively. Both P1 and P2 are related to westerly/northwesterly synoptic flows in winter and P3 includes the Changma or typhoons days. The simulations of P1, P2 and P3 with high wind velocities and constant wind directions show that 137Cs emitted from the KNPP during 0900~1400 LST (Local Standard Time) are dispersed to the east sea, southeast sea and southwestern inland, respectively. On the other hands, 5 sub-category of P4 have various local wind distributions under weak synoptic forcing and accounted for less than 10% of all. While the simulated 137Cs for P4-2 is dispersed to southwest inland due to northeasterly flows, 137Cs dispersed northward for the other patterns. The simulated average 137Cs concentrations of each local wind pattern are 564.1~1076.3 Bqm-3. The highest average concentration appeared P4-4 due to dispersion in a narrow zone and weak wind environment. On the other hands, the lowest average concentration appeared P1 and P2 due to rapid dispersion to the sea. The simulated 137Cs concentrations and dispersion locations of each local wind pattern are different according to the local wind conditions.
For the purpose of protecting the health of citizens and creating a delightful environment, the Government shall establish the environmental standards, and make such standards keep their propriety according to any changes in environmental conditions. The Special Metropolitan City, Metropolitan City or Do may, in case where deemed necessary in view of the speciality of regional environments, set forth the separate environmental standards which are more expanded and strengthened than the environmental standards by the Municipal Ordinance of the relevant City/Do.
The purpose of this study was for the management of stream waters of Jeju Island and proposed the appropriate Jeju local river environmental standards. Jeju-Do and Daejeon-si applies the Local River Environmental Standards in Korea. While each nationʹ circumstances and environment are different, for the most part, environmental standards and purposes of use are similar to those in Korea. Proposed Jeju River Local Environment Standards followed The River Environment Standards of Nation(Korea) for Living Environment Standards. Newly Strengthened Value is Cd, Carbon tetrachloride, 1,2-dichloroethene, Tetrachloroethylene(PCE) and add Items is Fluorine, Selenium, Phenol and Toluene for Human Health Protection.
Purpose: In this study a pilates exercise program using self-efficacy sources was provided for women 65 years of age or older and the effects on physical fitness, body composition, depression, self-efficacy, and health-related quality of life were tested. Methods: A quasi-experimental study employing a nonequivalent control group, pre-post design was conducted. The subjects consisted of 30 older women in the experiment group and 30 in the comparison group. The intervention was conducted twice a week for a period of 12 weeks. During this period, the pilates exercise program using self-efficacy sources (health education, phone coaching, mentoring, checking homework, recreation) were provided in the experiment group and pilates exercise program were offered in the comparison group. Chi-square test, independent t-test, ANCOVA were used for data analysis. Results: Following completion of the program, upper muscle strength (F=4.131, p=.047), low muscle strength (F=5.558, p=.022), upper flexibility (F=5.252, p=.026), static balance (F=5.957, p=.018), dynamic body balance & agility(F=18.971, p<.001), endurance(F=10.058, p=.002), muscle mass (F=5.748, p=.020), depression (F=4.493, p=.038), Self-efficacy (F=33.853, p<.001), and Health-related quality of life(F=5.586, p=.022) were significantly better in the experimental group. Conclusion: Findings from this study indicate that the pilates exercise program using self-efficacy sources are effective in enhancing physical fitness, body composition, self-efficacy and health-related quality of life and in decreasing depression for female elders and could therefore be regarded as positive program for promotion of physical and mental health for older women.
Wind profiler provides vertical profiles of three-dimensional wind vectors with high spatiotemporal resolution. The wind vectors is useful to analyze severe weather phenomena and to validate the various products from numerical weather prediction model. However, the wind measurements are not immune to ground clutter, bird, insect, and aircraft. Therefore, quality of wind vectors from wind profiler must be quantitatively evaluated prior to its application. In this study, wind vectors from UHF wind profiler at Ganwon Regional Meteorological Administration was quantitatively evaluated using 27 radiosonde measurements that were launched every two or three hours according to rainfall intensity during Intensive Observation Period (IOP) from June to July 2013. In comparison between two measurements, wind vectors from wind profiler was relatively underestimated. In addition, the accuracy and quality of wind vectors from wind profiler decrease with increasing beam height. The accuracy and quality of the wind vectors for rainy periods during IOP were higher than for the clear-air measurements. The moderate rainfall intensity lead to multi-peaks in Doppler spectrum. It results in overestimation of vertical air motion, whereas wind vectors from wind profilers shows good agreement with those from radiosonde measurements for light rainfall intensity.