검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2018.02 KCI 등재 서비스 종료(열람 제한)
        At present research on mining backfill materials is being carried out to prevent ground subsidence and breaking by underground cavern of exhausted mines. However, backfill materials can cause secondary environmental issues such as ground pollution. To solve these issues, liner and cover materials are constructed before backfill materials constructed, to inhibit toxic substances form moving to the surroundings. Liner and cover materials, however, should have an accelerating performance after construction and when the accelerating performance is degraded, the work efficiency can be lowered, and the construction cost can be increased, by many rebound content. Therefore, this study develops mining liner and cover materials, and evaluates their accelerating performance and physical properties of liner and cover materials by types and content of accelerating agent. In case of aluminate accelerating agent, it is mixed with more than 5% of liner and cover materials(binder/ratio); thus an accelerating performance satisfying Korean Industrial Standards(KS) occurs, and in case of alkali-free accelerating agent, when it is mixed with more than 7%(binder/ratio), accelerating performance satisfying KS occurs. The more the accelerating agent capacity increases, the more compressive strength decreases. In addition, it is confirmed that compressive strength of aluminate accelerating agent is more degraded than compressive strength of the alkali-free accelerating agent. It is also confirmed that drying shrinkage stability of the alkali-free accelerating agent is better than the drying shrinkage stability of the aluminate accelerating agent.
        2.
        2017.11 KCI 등재 서비스 종료(열람 제한)
        A Controlled Low-Strength Materials (CLSM) is suitable for mine backfilling because it does not require compaction owing to it high fluidity and can be installed quickly. Therefore, a CLSM utilizing CO2-solidified Circulating Fluidzed Bed Combustion (CFBC) coal ash was developed and it’s properties were investigated, since. CO2-solidification of CFBC coal ash can inhibit exudation of heavy metals. The chemical composition and specific surface area of Pulverized coal Combustion fly ash and CFBC fly ash were analyzed. The water ratio, compressive strength and length change ratio of CLSM were confirmed. The water ratios differed with the specific surface area of the CLSM. It was confirmed that the porosity of CLSM affected its compressive strength and length change ratio.
        3.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        Multi-Walled Carbon Nanotubes (MWCNTs) were modified with epoxy and aminosilane diethanolamine (DEA), and nanocomposites of poly(butylene adipate-co-terephthalate) (PBAT) and the modified MWCNTs were prepared with the aim of improving the physical properties of biodegradable PBAT. The physical and the thermal properties of the PBAT/MWCNT nanocomposites were investigated using various techniques. Fourier transform infrared spectroscopy measurements revealed that the MWCNTs were efficiently modified with DEA. Scanning electron micrographs of the nanocomposites indicated that the modified MWCNTs were dispersed homogeneously in PBAT. The thermal stability of the nanocomposite decreased with increase in the content of epoxy-MWCNT-DEA due to the poor thermal stabilities of epoxy and amino silane DEA. However, the surface hydrophobicity of the nanocomposite increased. The highest stress (170% of PBAT) was observed when the content of epoxy-MWCNT-DEA in the nanocomposite was 2 wt%.
        4.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        Sustainable and eco-friendly polymers, natural polymers, bio-based polymers, and degradable polyesters, are of growing interest because of environmental concerns associated with waste plastics and emissions of carbon dioxide from preparation of petroleum-based polymers. Degradable polymers, poly(butylene adipate-co-terephthalate) (PBAT), poly(propylene carbonate) (PPC), and poly(L-lactic acid) (PLLA), are related to reduction of carbon dioxide in processing. To improve a weak mechanical property of a degradable polymer, a blending method is widely used. This study was forced on the component separation of degradable polymer blends for effective recycling. The melt-mixed blend films in a specific solvent were separated by two layers. Each layer was analysed by FT-IR, DSC, and contact angle measurements. The results showed that each component in the PPC/PLLA and PPC/PBAT blends was successfully separated by a solvent.