The analytical method for 16 organophosphorus pesticides was developed in this study. The 16 organophosphorus pesticides were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) using on-line solid phase extraction (on-line SPE) with PLRP- S cartridge. Analysis of all analytes in the MS/MS was processed in the electrospray ioni-zation (ESI) positive mode. They are Azinphos ethyl, Chlorfenvinphos, Ethion, Famphur, Phosmet, Phosphamidon, Terbufos, Aspon, Chlorpyrifos-methyl, Crotoxyphos, Dichlofenthi-on, Dicrotophos, Fonofos, Thionazin, Dimethoate and Iprobenfos. Limits of detection (LODs) and Limits of quantification(LOQs) were obtained as 0.8~2.0 ng/L and 2.6~6.4 ng/L, respectively. All compounds were not detected at the 8 sampling points of the raw water and clean water.
In Korea, many drinking water treatment plants (DWTPs) have introduced and are going to introduce biological activated carbon (BAC) process to treated dissolved organic matter (DOM) in water which are difficult to control by conventional water treatment processes. Even though more decade have passed since introduced BAC in Korea, most of BAC operating method was followed to the modified sand filter operating manuals. In case of BAC backwashing, many DWTPs set the periods of backwashing about 3∼5 days.
In this study, we have collected data to set the proper BAC backwashing periods from both pilot-plant and real DWTPs. We had measured heterotrophic plate count (HPC), turbidity, water temperature, dissolved organic carbon (DOC) and headloss from just after backwashing to the next backwashing time for two years. Considering water quality factors, the BAC run time from backwashing to the next backwashing could extend more 30 days without water quality deterioration if the head loss do not reach the limited level which depends on each BAC facilities’ condition. It means the BAC treated water could be saved in the proportion of extended the backwashing period to the existing backwashing period.
This research was performed by means of several different virgin granular activated carbons (GAC) made of each coal, coconut and wood, and the GACs were investigated for an adsorption performance of iodine-131 in a continuous adsorption column. Breakthrough behavior was investigated that the breakthrough points of the virgin two coals-, coconut- and wood-based GACs were observed as bed volume (BV) 7080, BV 5640, BV 5064 and BV 3192, respectively. The experimental results of adsorption capacity (X/M) for iodine-127 showed that two coal- based GACs were highest (208.6 and 139.1 μg/g), the coconut-based GAC was intermediate (86.5 μg/g) and the wood-based GAC was lowest (54.5 μg/g). The X/M of the coal-based GACs was 2∼4 times higher than the X/M of the coconut-based and wood-based GACs.
This study accessed the adsorption characteristics of the 9 trihalomethanes (THMs) on coal-based granular activated carbon (GAC). The breakthrough appeared first for CHCl3 and sequentially for CHBr2Cl, CHBr3, CHCl2I, CHBrClI, CHBr2I, CHClI2, CHBrI2, and CHI3. The maximum adsorption capacity (X/M) for the 9 THMs with apparent breakthrough points ranged from 1,175 μg/g (for CHCl3) to 11,087 μg/g (for CHI3). Carbon usage rate (CUR) for CHCl3 was 0.149 g/day, 5.5 times higher than for CHI3 (0.027 g/day).
Seven tetracycline classes of antibiotics were treated using ultraviolet (UV) and UV/H2O2 oxidation. Two different UV lamps were used for the UV and UV/H2O2 oxidation. The performance of the UV oxidation was different depending on the lamp type. The medium pressure lamp showed better performance than the low pressure lamp. Combining the low pressure lamp with hydrogen peroxide (H2O2) improved the removal performance substantially. The by-products formation of tetracycline by UV and UV/H2O2 were investigated. The protonated form ([1 + H]+) of tetracycline was m/z 445, reacted to yield almost exclusively two oxidation by-products by UV and UV/H2O2 oxidation. Their protonated forms of by-products were m/z 461 and m/z 477. The structures of tetracycline’s by-products in UV and UV/H2O2 system were similar.
Effects of coagulation types on flocculation were investigated by using a photometric dispersion analyzer (PDA) as an on-line monitoring technique in this study. Nakdong River water were used and alum and ferric chloride were used as coagulants. The aim of this study is to compare the coagulation characteristics of alum and ferric chloride by a photometric dispersion analyzer (PDA). Floc growing rates (Rv) in three different water temperatures (4℃, 16℃ and 30℃) and coagulants doses (0.15 mM, 0.20 mM and 0.25 mM as Al, Fe) were measured. The floc growing rate (Rv) by alum was 1.8∼2.8 times higher than that of ferric chloride during rapid mixing period, however, for 0.15 mM∼0.25 mM coagulant doses the floc growing rate (Rv) by ferric chloride was 1.1∼2.3 times higher than that of alum in the slow mixing period at 16℃ water temperature. Reasonable coagulant doses of alum and ferric chloride for turbidity removal were 0.1 mM (as Al) and 0.2 mM (as Fe), respectively, and the removal efficiency of those coagulant doses showed 94% for alum and 97% for ferric chloride. The appropriate coagulant dose of alum and ferric chloride for removing dissolved organic carbon (DOC) showed about 0.3 mM (as Al, Fe) and at this dosage, DOC removal efficiencies were 36% and 44%, and ferric chloride was superior to the alum for removal of the DOC in water.
Adsorption and biodegradation performance of tetracycline antibiotic compounds such as ttetracycline (TC), oxytetracycline (OTC), minocycline (MNC), chlortetracycline (CTC), doxycycline (DXC), meclocycline (MCC), demeclocycline (DMC) on granular activated carbon (GAC) and anthracite-biofilter were evaluated in this study. Removal efficiency of seven tetracycline antibiotic compounds showed 54%∼97% by GAC adsorption process (EBCT: 5∼30 min). The orders of removal efficiency by GAC adsorption were tetracycline, demeclocycline, oxytetracycline, chlortetracycline, doxytetracycline, meclocycline and minocycline. Removal efficiencies of seven tetracycline antibiotic compounds showed 1%∼61% by anthracite biofiltration process (EBCT: 5∼30 min). The highest biodegradable tetracycline antibiotic compound was minocycline, and the worst biodegradable tetracycline antibiotic compounds were oxytetracycline and demeclocycline.
The aims of this study were to investigate and confirm the occurrence and distribution patterns of blood lipid lower agents (BLLAs) in Nakdong river basin (mainstream and its tributaries). 4 (atorvastatin, lovastatin, mevastatin and simvastatin) out of 5 statins and 2 (clofibric acid and zemfibrozil) out of 3 fibrates were detected in 29 sampling sites and simvastatin (>50%) was predominant compound followed by atorvastatin, lovastatin and clofibric acid. The total concentration levels of BLLAs on April, August and November 2009 in surface water samples ranged from ND∼25.7 ng/L, ND∼18.8 and ND to 38.8 ng/L, respectively. The highest concentration level of BLLAs in the mainstream and tributaries in Nakdong river were Goryeong and Jincheon-cheon, respectively. The sewage treatment plants (STPs) along the river affect the BLLAs levels in river and the BLLAs levels decreased with downstream because of dilution effects.
Perfluorooctanoic acid (PFOA) and perfluorooctyl sulfonate (PFOS) is a new persistent organic pollutants of substantial environmental concern. This study investigated the potential of magnetic ion exchange resin (MIEXⓇ) as the adsorbent for the removal of PFOA and PFOS from Nakdong River water. In our batch experiments, we studied the effect of some parameters (pH, temperature, sulfate concentration) on the removal of PFOA and PFOS. The results of sorption kinetics on MIEXⓇ show that it takes 90 min to reach equilibrium but the economical contact time and dosage were 30 min and 10 mL/L. An increase in pH (pH 6∼10) leads to a decrease in PFOA (2.0%) and PFOS (3.6%) sorption on MIEXⓇ. The sorption of both PFOA and PFOS decreases with an increase in ionic strength for sulfate ion (SO4 2-), due to the competition phenomenon. An increase in water temperature (8℃∼28℃) in water leads to a increase in PFOA (2.8%) and PFOS (4.3%) sorption on MIEXⓇ. Based on the sorption behaviors and characteristics of the adsorbents and adsorbates, ion exchange and hydrophobic interaction were deduced to be involved in the sorption, and hemi-micelles possibly formed in the intraparticle pores.
We compared the applicability and economical efficiency of peroxone process with those of ozone process in the existing water treatment plant on downstream of Nakdong River. After comparing the peroxone process for removing geosmin with the ozone process in lab scale test, peroxone process showed much higher removal efficiency than the ozone process at the same ozone dosage. Proper range of H2O2/O3 ratio were 0.5~1.0 and the half-life of geosmin was about 5.5~6.8 min when the H2O2/O3 ratio was set to 0.5 during 1~2 mg/L of ozone dosage. Peroxone process could reduce the ozone dosage about 50 to maximum 30% for the same geosmin removal efficiency compared to the ozone process in the pilot scale test. In case of 1,4-dioxane treatment, peroxone process could have 3~4 times higher efficiency than ozone process at the same ozone dosage. The results of estimating the economical efficiency of ozone and peroxone process for treating geosmin and 1,4-dioxane by using pilot scale test, in case of the removal target was set to 85% for these two materials, the cost of peroxane process could be reduced about 1.5 times compared to ozone process, and in the same production cost peroxone process could have 2~3 times higher removal efficiency than ozone process. The removal efficiency by peroxone process showed a large difference depending on the physicochemical characteristics of target materials and raw water, therefore detailed examination should be carried out before appling peroxone process.
The aims of this study were to investigate and confirm the occurrence and distribution patterns of iodinated X-ray contrast media (iopromide) in Nakdong river basin (mainstream and its tributaries). Iopromide was detected in 16 sampling sites. The concentration levels of iopromide on February 2011 and on October 2011 in surface water samples ranged from not detected (ND) to 1481.1 ng/L and ND to 1168.2 ng/L, respectively. The highest concentration level of iopromide in the mainstream and tributaries in Nakdong river were Goryeong and Jincheon-cheon, respectively. The sewage treatment plants (STPs) along the river affect the iopromide levels in river and the iopromide levels decreased with downstream because of dilution effects.
Formation of disinfection by-products (DBPs) including trihalomethans (THMs), haloacetic acid (HAAs), haloacetonitriles (HANs) and others from chlorination of algogenic organic matter (AOM) of Microcystis sp., a blue-green algae. AOM of Microcystis sp. exhibited a high potential for DBPs formation. HAAs formation potential was higher than THMs and HANs formation potential. The percentages of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) formation potential were 43.4% and 51.4% in the total HAAs formation potential. In the case of HANs formation potential, percentage of dichloroacetonitrile (DCAN) formation potential was 97.7%. Other DBPs were aldehydes and nitriles such as acetaldehyde, methylene chloride, isobutyronitrile, cyclobutanecarbonitrile, pentanenitrile, benzaldehyde, propanal, 2-methyl, benzyl chloride, (2-chloroethyl)-benzene, benzyl nitrile, 2-probenenitrile and hexanal.
The aims of this study were to investigated the occurrence of caffeine and carbamazepine in Nakdong river basin (8 mainstreams and 2 tributaries) and the behavior of caffeine and carbamazepine under drinking water treatment processes (conventional and advanced processes). The examination results showed that caffeine was detected at all sampling sites (5.4 ∼558.5 ng/L), but carbamazepine was detected at five sampling sites (5.1∼79.4 ng/L). The highest concentration level of caffeine and carbamazepine in the mainstream and tributaries in Nakdong river were Goryeong and Jinchun-cheon, respectively. These pharmaceutical products were completely removed when they were subject to conventional plus advanced processes of drinking water treatment processes. Conventional processes of coagulation, sedimentation and sand-filtration were not effective for their removal, while advanced processes of ozonation and biological activated carbon (BAC) filtration were effective. Among these pharmaceuticals, carbamazeoine was more subject to ozonation than caffeine.