This study aimed to develop strategies to re-establish the Park Nature Conservation Area in Bukhansan National Park, reflecting landscape ecological value by using the zonation program Marxan with Zones. Planning unit was set by watershed, and the basic data were mapped, considering topographical and ecological values. Mapped indicators were analyzed with the application framework of Marxan with Zones by indexing some indicators. The zones divided into Park Nature Conservation Area (Zone A), Park Nature Environment AreaⅠ(Zone B) which is reflected on the concept of Potential Park Nature Conservation Area and Park Nature Environment AreaⅡ(Zone C). The best solution for each of the scenarios was fixed through the sensitiveness analysis. From these, the final solution was selected considering five criteria including area ratio of conservation area and grouping. Lastly, the final solution was verified in the overlapped analysis with recent zonation. According to the results, the number of watersheds was 77, with an average area of 1,007,481 m2. In terms of basic mapping and indexation, the slope index and number of landscape resources for topographical property were average 0.22 and 38 places, respectively. Biotope index was average 0.69 and legally protected species was 14 species, reflecting ecological values. As the social and economic indicators, trail index was average 0.04, and the number of tour and management facilities was 43 places. Through the framework of Marxan with Zones, the best solution for scenario 1 which was set by the highest conservation criteria was selected as the final solution, and the area ratio of Park Nature Conservation Area and grouping was excellent. As the result of overlapped analysis, suggested zonation of the Park Nature Conservation was better than the recent zonation in the area raito (28.3%), biotope gradeⅠ(15.4%) and the distribution points (10 places) of legally protected species with verification of proper distribution of conservation features according to the zone.
This study investigated the characteristics of variations in carbon dioxide concentration and air temperature with the vertical change of surface in a grassplot. Field observations were carried out at a grassplot in Gyeongnam Science High School, over four days in August and November, 2015. Continuous observation equipment (GMP343, VAISALA) was installed at the LP (0.1 m from the surface) and UP (1.1 m from the surface) points, and the carbon dioxide concentration and air temperature were measured simultaneously at 1-min intervals. To summarize the results of the observation, August had higher than average concentrations of carbon dioxide, while November showed average air temperatures. Moreover, the concentration of carbon dioxide was higher at the UP point, while the air temperature was higher at the LP point. The correlation coefficient of carbon dioxide concentration between the UP and LP points was 0.80 in August across all the four days, while it was higher in November at 0.58 0.95. The results of the regression analysis of carbon dioxide concentration with air temperature changes for both August and November showed a distinct change at the LP point (R2=0.36 0.76), as compared to the UP point (R2=0.1 0.57). Between the UP and LP points, the carbon dioxide concentration and air temperature regression analysis results indicated that an active exchange was taking place between the two points.
Asthma deaths in Seoul peaked on the third, fifth, and second days after the PM concentration exceeded the daily average concentration standard. We classified the synoptic meteorological conditions, based on the days involving such cases, into three categories. Type 1 included the meteorological condition likely to cause high air pollution concentrations in the leeward region, the dominant wind direction of which is the northwest. Type 2 included the meteorological condition likely to cause high air pollution concentrations due to the weak wind velocity under stable atmospheric conditions. Type 3 was when the passage low atmospheric pressure and the expansion of high atmospheric pressure occurred at the rear, indicating a meteorological condition likely to cause high air pollution, in certain regions. Type 1 occurred 11 times, with high concentrations of over 100㎍/m³ being observed in the southeastern part of Seoul. Type 2 occurred 24 times, often accompanied by a PM concentration of 100~400 ㎍/m³. Type 3 occurred 11 times, and was accompanied by several days of yellow dust that accounted for the highest concentrations.
Catch data for the common squid (Todarodes pacificus), classified by squid-jigging fisheries per grid (size: 0.5° latitude × 0.5° longitude), and the water temperature values KODC (Korea Ocean Data Center) were collected for the 1980–2009 period to study the changes in squid distribution and migration with climate regimes (1980s, 1990s, and 2000s). The primary fishing period in the 1990s and 2000s was approximately 2–3 months earlier than that in the 1980s. Especially in the East Sea, the fishing grounds in the 1980s stayed longer at high latitudes than those in the other decades. Moreover, in the 1980s, centers of the fishing ground were located near the Yamato bank (central East Sea), whereas in the 1990s and 2000s, they were situated near the southeastern coast of the Korean peninsula.
The classification of airflow patterns during high ozone (O3) and PM10 episodes on Jeju Island in recent years (2009-2015), as well as their correlation with meteorological conditions according to classified airflow patterns were investigated in this study. The airflow patterns for O3 and PM10 were classified into four types (Types A-D) and three types (Types E-G), respectively, using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and synoptic weather charts. Type A was the most dominant airflow pattern for O3 episodes, being characterized by the transport of airflows from urban and industrial areas in China with the highest frequency (about 69%, with a mean of 67 ppb). With regard to the PM10 episodes, Type E was the most dominant airflow pattern, and was mostly associated with long distance transport from Asian dust source regions along northwesterly winds, having the highest frequency (about 92%, with a mean of 136 μg/m3). The variations in the concentration of O3 and PM10 during the study period were clarified in correlation with two pollutant and meteorological variables; for example, the high (low) O3 and PM10 concentrations with high (low) air temperature and/or wind speed and vice versa for precipitation. The contribution of long-range transport to the observed PM10 levels in urban sites for different airflow patterns (Types E-F), if estimated in comparison to the data from the Gosan background site, was found to account for approximately 87-93% (on average) of its input. The overall results of the present study suggest that the variations in O3 and PM10 concentrations on Jeju Island are mainly influenced by the transport effect, as well as the contribution of local emissions.
This study was conducted to estimate the removal efficiency of algae by a mechanical Screw Brush Cone Filter in a lake. The device used a stainless steel cone-shaped filter with a screw brush. The ability of the developed device to remove algae larger than 20μm in Lake ChaSa, Gwangyang city was tested from August to September 2014. The results show that the removal rates for chlorophyll-a, suspended solids and volatile suspended solids were 44-87%(mean 61%), 35-54%(mean 40%), and 37-46%(mean 43%), respectively. This study also discusses equipment and device operation costs and device application problems, and suggests in situ. solutions to these problems.
For areas with the diverse contamination sources, the change of 4-nitrophenol contamination and impact of potential contamination sources have been evaluated using monitoring data and a numerical model (HydroGeoSphere). The model considered several parameters including land cover, precipitation, and flow rate. And, the model has been performed to investigate the effect of decay rate of 4-nitrophenol. The results of the simulations showed that the influence on 4-nitrophenol in downstream was mainly greater than that in upstream, and the tributaries did not significantly affect the mainstream because of their low flow rates. In addition, the effect of contamination sources was simulated for each section, then the measured data were higher than the corresponding simulated data in most sections of the Geumho river. In particular, the impact of the potential contamination sources in the upstream area was much higher than that in the other area, thus more monitoring data for the upstream area is required.
To determine the effect of air pollution reduction policies, the long-term trend of air pollutants should be analyzed. Kolmogorov-Zurbenko (KZ) filter is a low-pass filter, produced through repeated iterations of a moving average to separate each variable into its temporal components. The moving average for a KZ(m, p) filter is calculated by a filter with window length m and p iterations. The output of the first pass subsequently becomes the input for the next pass. Adjusting the window length and the number of iterations makes it possible to control the filtering of different scales of motion. To break down the daily mean PM10 into individual time components, we assume that the original time series comprises of a long-term trend, seasonal variation, and a short-term component. The short-term component is attributable to weather and short-term fluctuations in precursor emissions, while the seasonal component is a result of changes in the solar angle. The long-term trend results from changes in overall emissions, pollutant transport, climate, policy and/or economics. The long-term trend of the daily mean PM10 decreased sharply from 59.6 ug/m3 in 2002 to 44.6 ug/m3 in 2015. This suggests that there was a long-term downward trend since 2005. The difference between the unadjusted and meteorologically adjusted long-term PM10 is small. Therefore, we can conclude that PM10 is unaffected by the meteorological variables (total insolation, daily mean temperature, daily mean relative humidity, daily mean wind speed, and daily mean local atmospheric pressure) in Busan.
Rapid industrial development has led to a serious problem of pollution in the industrial sector. With the increasing social need for environmental protection, research on air pollution prevention equipment for reducing pollutants in industrial processes is actively being undertaken. The deterioration of existent, installed facilities, their increased emission rates, and the strengthening of the effluent quality standards make complying with permissible emission standards difficult. In fact, installing new electric precipitators or complementing existent facilities is inevitable. The expansion and complementation of the installed electrical precipitators have led to improvements in dust collection efficiency, shorter working times, and lower costs. Because of its easy installation and simple manufacturing process, the production method with the discharge electrode of an electric precipitator is widely used. The following conclusions were reached by classifying discharge electrodes into four types based on the production method and mutually comparing them by their dust collection efficiency. None of the four types used in this study were damaged by impact. However, we were able to confirm some strain from the compression sites of both type A and type B. Both type B and type C are expected to have greater dust collection efficiencies than the other models due to their large vibration transmissibility. Moreover, the high vibrational energy is expected to cause rapping damage during its operation. Particularly, in the case of type B, some of the strain was found at the end of the compression site. The coupling schemes of both type C and type D are out of vibration transmissibility. On the other hand, the ability to maintain straightness and solidity of the side is regarded as outstanding and stable. Type D has outstanding on-site workability, considering the presence of locking, structural stability, and work conditions. From these experiments, we determined that type C is the most ideal connection method of discharge electrode, considering its construction period of renovation. Type C is inferior to type D with regard to on-site workability. However, type C has outstanding dedusting transmission with regard to the straightness, solidity maintenance, and vibration of shearing stress.
Green synthesis of gold nanoparticles(GNPs) considered more ecofriendly and cost effective than other chemical methods use of dangerous reagents and solvents, improved material and energy efficiency and enhanced design of non-toxic products. In this study, we developed a green synthesis method for using Caulis in Taeniam (BCT). BCT were characterized by UV-vis, Zetasizer, TEM, XRD, and FTIR. The antioxidant activity of BCT was determined by DPPH and ABTS radical-scavenging assays, and heme oxygenase-1 induction in RAW 264.7 macrophages. The resulting BCT appeared spherical with an average diameter of 67.171.39 nm The aAntioxidant activity was increased in a dependent manner. To conclude, the green synthesis of BCT-GNPs was successful, and it appers to be useful in the for future applications.
In this study, we evaluated the potential of 70% ethanol extract from Persicaria nepalensis (PNE) as a cosmetic ingredient by primary skin irritation, ocular irritation, and maximization tests for delayed hypersensitivity in New Zealand white rabbits and Hartley guinea pig. Skin safety study was performed to evaluate the potential toxicity of PNE using the primary irritation test. In the primary irritation test, 50% PNE was applied to the skin, and no adverse reactions such as erythema and edema were observed at the intact skin sites. Therefore, PNE was classified as a practically non-irritating material based on a primary irritation index of "0.0.". In the ocular irritation test, the 50% PNE applied did not show any adverse reactions in the different parts of rabbit eyes, including the cornea, iris, and conjunctiva. Thus, PNE was classified as a practically non-irritating material based on an acute ocular irritation index of "0.0.". Skin sensitization was tested by the Guinea Pig Maximization Test (GPMT) and Freund's Complete Adjuvant (FCA) using an intradermal injection of 10% PNE. Edema and erythema were not observed 24 and 48 h after the topical application of PNE in skin sensitization test, which exhibited a sensitization score of "0.0.". Therefore, it can be suggested that P. nepalensis could be used as potential candidates for cosmoceutical ingredients, without any major side effects.
The aim of this study was to evaluate the efficacy of red ginseng drinks as school meal drinks for 456 middle and high school students in Cheongdo-gun, North Gyeongsang Province. In preliminary studies, we focused on saponin with an efficacy of Rg 1 and Rg 2 in prepared red ginseng drinks. The health benefits and sensory characteristics were also investigated. For the frequency analysis, the satisfaction of the drinks as beverages serving as a school meal was relatively low, and the demand for fruit drinks was high. The result of sensory evaluations indicated a positive response of > 50.0% for the container packaging and design, daily intake, and tastes. Regarding the correlation analysis on red ginseng drinks, there were significant differences (p < 0.01) in the response to packaging (a daily intake) and design. In addition, health and learning benefits showed a very high correlation at the p < 0.01 significance level.
The objective of this study was to evaluate the characteristics of duck litter in ducks fed diets containing Houttuynia cordata powder. One-day-old ducklings (Pekin) were randomly divided into two groups and fed a control or 1% H. cordata powder-containing diet for an experimental period of three weeks. The results showed that pH for 1–2 weeks and total nitrogen for 1–3 weeks in duck litter were affected by dietary treatments with 1% H. cordata powder (P < 0.05). For Volatile Fatty Acids (VFAs), there was no significant difference (P > 0.05) between ducks fed 1% H. cordata and control diets, as shown in the results for acetic acid and propionic acid in duck litter over three weeks; but, this was not the case for propionic acid at 3 weeks. The inclusion of 1% H. cordata powder in the diet had a the positive effect on increasing the total nitrogen and decreasing pH and VFAs in duck litter.