1970년대 이후 한국의 빠른 경제성장 동안에 수로나 철도 등 많은 지중구조물들이 건설되었다. 1988년에 내진설계가 의무 화되었으나, 1988년 이전의 지중 구조물들은 내진설계가 반영되지 않았다. 따라서, 이러한 지중 구조물들은 지진이 일어났을 때 안전성을 확보하기 위해 효과적인 내진 보강방법이 필요하다. 그러한 이유로, 본 연구에서는 새롭게 개발된 보강재를 이 용한 RC 박스 지중 구조물 우각부 보강공법의 내진성능에 대하여 분석하였다. 이 공법은 박스구조물 우각부에 Pre-flexed member를 설치하여 외력에 저항력을 증대시키는 원리이다. 타당성을 검증하기 위해서 새로이 개발된 보강재와 기존의 보강 재를 실험과 유한요소해석으로 비교하였다. 유한요소모델에서 강재의 비선형 모델은 J2 Plasticity Model을 기초로 하고 콘 크리트는 CEB-FIP MODEL CODE 1990로 모델링되었다. 또한, 설계반영을 위한 박스 구조물과 보강재와의 합성률을 산정 하였다. 보강재와 박스구조물은 Tie에 의해 완전 부착된 상태의 연결조건 하에서 해석이 수행되었으며, 하중-변위곡선에서 실험과 유한요소해석의 결과가 서로 일치하였다.
도시기반 라이프라인은 지진발생시 시설물의 붕괴뿐만 아니라 붕괴로 인한 도시기능 마비, 대형화재와 같은 2차 피해를 동반하여 막대한 사회·경제적 손실을 야기할 것으로 예측된다. 이에 대한 대비책으로 국내에서는 지진재해대응시스템을 운영 중이며, 지진재해대응시스템은 각 시설물별 지진취약도 모델을 통해서 시설물의 파괴확률을 산정하고, 지진재해 정도를 평가한다. 따라서 본 논문에서는 국내 지반특성을 고려하여 도시기반 라이프라인 시설물 중 매설가스배관의 시간이력 해석을 수행하였고, 확률론적인 해석방법인 최우도추정법을 이용하여 지진취약도 모델을 개발하였다. 해석모델은 국내 대표도시인 서울지역에 매설된 고압관과 중압관으로 선정하였으며, 지반의 모델링은 Winkler foundation 모델을 이용하였다. 또한 개발된 취약도 모델의 GIS 적용방안을 제시하였다.
2013년 여름철 집중관측기간(장마기간: 2013년 6월 20일-7월 7일, 집중호우기간: 2013년 7월 8일-30일) 동안 이동식 기상관측시스템의 레윈존데 관측 자료를 전 지구 통합예측시스템 3차원 자료동화에 이용하여 그 효과를 살펴보았다. 효과 분석을 위한 2가지 모의실험 중 규준실험은 기존 기상청 관측 자료만 사용한 것이고 관측시스템실험은 기상청 관측 자료에 이동식 기상관측시스템의 레윈존데 자료를 추가한 것이다. 장마기간 동안 두 실험의 500 hPa 지위고도, 850 hPa 기온, 300 hPa 풍속의 관측 및 분석검증 비교 결과 큰 차이를 보이지 않았는데, 이는 고정관측소의 레윈존데 자료(0000 UTC 및 1200 UTC)만을 기준으로 검증이 이루어졌기 때문이다. 하지만, 종관기상관측시스템의 시간별 누적 강수량 자료를 이용한 강수검증에 있어서 관측시스템실험의 평균 공정임계지수가 규준실험에 비해 2% 수준으로 개선된 결과를 보였다. 특히 강수검증에서 긍정적인 효과가 나타난 사례만 비교한 경우, 관측시스템실험의 평균 공정임계지수가 규준실험에 비해 41%까지 개선된 결과를 보여 이동식 기상관측시스템 레윈존데 관측 자료가 수치모델의 예측정확도 향상에 유용함을 알 수 있었다.
본 연구에서는 부산지방기상청 장기 강수량 자료(1973-2007)를 이용하여 부산지역 확률강수량 및 이에 따른 재현 기간을 산정하였다. 확률강수량 산정에 있어서 확률가중모멘트법을 이용하여 매개변수를 추정하였고, x2 및 PPCC 검정을 통해 적합성분석을 실시하였다. 분석결과 최적의 확률분포형으로 GLO 모형을 채택하였다. 또한 AWS 자료를 이용하여 부산지역 확률강수량 분포도를 작성하였다. 6시간 지속강수량에 있어서 245.2 mm의 강수량이 100년 마다 발생할 수 있으며, 280.6 mm가 200년에 한번 정도 나타날 수 있다. 확률강수량 분포도 결과 1시간 지속강수일 경우 동래구에서 높은 값을 가지며, 3시간 지속강수는 부산연안 전반에 걸쳐 높게 나타나고 있다. 6시간 지속강수량일 경우는 부산진과 양산일대에서 높은 값을 나타내며 12시간 지속강수의 경우 남동연안지역과 웅상 일대에서 높은 값을 보이는 특징이 나타났다.
본 연구에서는 울릉도 온실기체 관측장비(CRDS)에서 관측된 CO2와 CH4 농도를 정형화된 QA·QC 처리절차를 통해 온실기체 평균 배경대기 농도값으로 활용하기 위한 정확도를 향상시켰다. QA·QC 처리절차는 총 3단계로 구성되었다. 첫 번째는 관측자료의 시간별 평균값을 구하기 위한 물리적 한계검사, 기후범위 검사 및 1시간 측정 자료수가 50% 이하인 자료는 제외시키는 과정으로 이루어져 있다. 두 번째는 일평균자료 산출을 위한 단계검사, 앞뒤로 같은 값일 경우는 제외, 하루 중 관측횟수가 15회 이상 및 일관측 자료의 표준편차가 일표준편차 평균의 3배 이하인 자료만 허용하는 과정이다. 세 번째는 기후적 특성분석 활용을 위한 Curve-fitting methods를 이용한 FFT 적용단계이다. 이상의 QA·QC 절차에 의한 CO2 및 CH4의 월평균농도 값을 안면도 지구대기감시센터 자료와 일본 료리 관측자료와 비교 분석한 결과 CO2에 있어서는 울릉도 관측자료 누락에 의한 영향이 다소 크게 나타나 안면도 관측값이 배경대기 평균농도 값으로 유효하였고, CH4는 안면도 보다 오히려 울릉도 관측값이 한반도 배경대기 평균농도 값으로 더 적절한 것으로 추정되었다.
In this study, the contributions of emissions (foreign and domestic) and atmospheric physical and chemical processes to PM2.5 concentrations were evaluated during a high PM2.5 episode (March 24-26, 2018) observed on the Jeju Island in the spring of 2018. These analyses were performed using the community multi-scale air quality (CMAQ) modeling system using the brute-force method and integrated process rate (IPR) analysis, respectively. The contributions of domestic emissions from South Korea (41-45%) to PM2.5 on the Jeju Island were lower than those (81-89%) of long-range transport (LRT) from China. The substantial contribution of LRT was also confirmed in conjunction with the air mass trajectory analysis, indicating that the frequency of airflow from China (58-62% of all trajectories) was higher than from other regions (28-32%) (e.g., South Korea). These results imply that compared to domestic emissions, emissions from China have a stronger impact than domestic emissions on the high PM2.5 concentrations in the study area. From the IPR analysis, horizontal transport contributed substantially to PM2.5 concentrations were dominant in most of the areas of the Jeju Island during the high PM2.5 episode, while the aerosol process and vertical transport in the southern areas largely contributed to higher PM2.5 concentrations.
The effect of coupled data assimilation (DA) on the meteorological prediction in the west coastal region of Korea was evaluated using a coupled atmosphere-ocean model (e.g., COAWST) in the spring (March 1726) of 2019. We performed two sets of simulation experiments: (1) with the coupled DA (i.e., COAWST_DA) and (2) without the coupled DA (i.e., COAWST_BASE). Overall, compared with the COAWST_BASE simulation, the COAWST_DA simulation showed good agreement in the spatial and temporal variations of meteorological variables (sea surface temperature, air temperature, wind speed, and relative humidity) with those of the observations. In particular, the effect of the coupled DA on wind speed was greatly improved. This might be primarily due to the prediction improvement of the sea surface temperature resulting from the coupled DA in the study area. In addition, the improvement of meteorological prediction in COAWST_DA simulation was also confirmed by the comparative analysis between SST and other meteorological variables (sea surface wind speed and pressure variation).
This study investigates the temporal and spatial variations of marine meterological elements (air temperature (Temp), Sea Surface Temperature (SST), and Significant Wave Height (SWH)) in seven coastal waters of South Korea, using hourly data observed at marine meteorological buoys (10 sites), Automatic Weather System on lighthouse (lighthouse AWS) (9 sites), and AWS (20 sites) during 2013-2017. We also compared the characteristics of Temp, SST, and air-sea temperature difference (Temp-SST) between sea fog and non-sea-fog events. In general, annual mean values of Temp and SST in most of the coastal waters were highest (especially in the southern part of Jeju Island) in 2016, due to heat waves, and lowest (especially in the middle of the West Sea) in 2013 or 2014. The SWH did not vary significantly by year. Wind patterns varied according to coastal waters, but their yearly variations for each coastal water were similar. The maximum monthly/seasonal mean values of Temp and SST occurred in summer (especially in August), and the minimum values in winter (January for Temp and February for SST). Monthly/seasonal mean SWH was highest in winter (especially in December) and lowest in summer (June), while the monthly/seasonal variations in wind speed over most of the coastal waters (except for the southern part of Jeju Island) were similar to those of SWH. In addition, sea fog during spring and summer was likely to be in the form of advection fog, possibly because of the high Temp and low SST (especially clear SST cooling in the eastern part of South Sea in summer), while autumn sea fog varied between different coastal waters (either advection fog or steam fog). The SST (and Temp-SST) during sea fog events in all coastal waters was lower (and more variable) than during non-sea-fog events, and was up to 5.7℃ for SST (up to 5.8℃ for Temp-SST).
The aerosol chemical components in PM2.5 in several regions (Seoul, Busan, Daejeon, and Jeju Island) were investigated with regard to their concentration characteristics and optical properties. The optical properties of the various aerosol components (e.g., water-soluble, insoluble, Black Carbon (BC), and sea-salt) were estimated using hourly and daily aerosol sampling data from the study area via a modeling approach. Overall, the water-soluble component was predominant over all other components in terms of concentration and impact on optical properties (except for the absorption coefficient of BC). The annual mean concentration and Aerosol Optical Ddepth (AOD) of the water-soluble component were highest in Seoul (at the Gwangjin site) (26 μg/m3 and 0.29 in 2013, respectively). Further, despite relatively moderate BC concentrations, the annual mean absorption coefficient of BC (21.7 Mm-1) was highest in Busan (at the Yeonsan site) in 2013, due to the strong light absorbing ability of BC. In addition, high AODs for the water-soluble component were observed most frequently in spring and/or winter at most of the study sites, while low values were noted in summer and/or early fall. The diurnal variation in the AOD of each component in Seoul (at the Gwangjin site) was slightly high in the morning and low in the afternoon during the study period; however, such distinctions were not apparent in Jeju Island (at the Aweol site), except for a slightly high AOD of the water-soluble component in the morning (08:00 LST). The monthly and diurnal differences in the AOD values for each component could be attributed to the differences in their mass concentrations and Relative Humidities (RH). In a sensitivity test, the AODs estimated under RH conditions of 80 and 90% were factors of 1.2 and 1.7 higher, respectively, than the values estimated using the observed RH.
Temporal and spatial characteristics of the frequency of several weather types and the change in air pollutant concentrations according to these weather types were analyzed over a decade (2007-2016) in seven major cities and a remote area in Korea. This analysis was performed using hourly (or daily) observed data of weather types (e.g., mist, haze, fog, precipitation, dust, and thunder and lighting) and air pollutant criteria (PM10, PM2.5, O3, NO2, CO, and SO2). Overall, the most frequent weather type across all areas during the study period was found to be mist (39%), followed by precipitation (35%), haze (17%), and the other types (≤ 4%). In terms of regional frequency distributions, the highest frequency of haze (26%) was in Seoul (especially during winter and May-June), possibly due to the high population and air pollutant emission sources, while that of precipitation (47%) was in Jeju (summer and winter), due to its geographic location with the sea on four sides and a very high mountain. PM10 concentrations for dust and haze were significantly higher in three cities (up to 250 μg/m3 for dust in Incheon), whereas those for the other four types were relatively lower. The concentrations of PM2.5 and its major precursor gases (NO2 and SO2) were higher (up to 69 μg/m3, 48 ppb, and 16 ppb, respectively, for haze in Incheon) for haze and/or dust than for the other weather types. On the other hand, there were no distinct differences in the concentrations of O3 and CO for the weather types. The overall results of this study confirm that the frequency of weather types and the related air quality depend on the geographic and environmental characteristics of the target areas.
Meteorological characteristics related to variations in ozone (O3) concentrations in the Korean peninsula before, during, and after Typhoon Talas (1112) were analyzed using both observation data and numerical modeling. This case study takes into account a high O3 episode (e.g., a daily maximum of ≥90 ppb) without rainfall. Before the typhoon period, high O3 concentrations in the study areas (e.g., Daejeon, Daegu, and Busan) resulted from the combined effects of stable atmospheric conditions with high temperature under a migratory anticyclone (including subsiding air), and wind convergence due to a change in direction caused by the typhoon. The O3 concentrations during the typhoon period decreased around the study area due to very weak photochemical activity under increased cloud cover and active vertical dispersion under a low pressure system. However, the maximum O3 concentrations during this period were somewhat high (similar to those in the normal period extraneous to the typhoon), possibly because of the relatively slow photochemical loss of O3 by a H2O + O(1D) reaction resulting from the low air temperature and low relative humidity. The lowest O3 concentrations during the typhoon period were relatively high compared to the period before and after the typhoon, mainly due to the transport effect resulting from the strong nocturnal winds caused by the typhoon. In addition, the O3 increase observed at night in Daegu and Busan was primarily caused by local wind conditions (e.g., mountain winds) and atmospheric stagnation in the wind convergence zone around inland mountains and valleys.
The classification of airflow patterns during high ozone (O3) and PM10 episodes on Jeju Island in recent years (2009-2015), as well as their correlation with meteorological conditions according to classified airflow patterns were investigated in this study. The airflow patterns for O3 and PM10 were classified into four types (Types A-D) and three types (Types E-G), respectively, using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and synoptic weather charts. Type A was the most dominant airflow pattern for O3 episodes, being characterized by the transport of airflows from urban and industrial areas in China with the highest frequency (about 69%, with a mean of 67 ppb). With regard to the PM10 episodes, Type E was the most dominant airflow pattern, and was mostly associated with long distance transport from Asian dust source regions along northwesterly winds, having the highest frequency (about 92%, with a mean of 136 μg/m3). The variations in the concentration of O3 and PM10 during the study period were clarified in correlation with two pollutant and meteorological variables; for example, the high (low) O3 and PM10 concentrations with high (low) air temperature and/or wind speed and vice versa for precipitation. The contribution of long-range transport to the observed PM10 levels in urban sites for different airflow patterns (Types E-F), if estimated in comparison to the data from the Gosan background site, was found to account for approximately 87-93% (on average) of its input. The overall results of the present study suggest that the variations in O3 and PM10 concentrations on Jeju Island are mainly influenced by the transport effect, as well as the contribution of local emissions.
The spatial and temporal variations of CO2 concentrations and radiative forcing (RF) due to CO2 were examined at urban center (Yeon-dong) during 2010-2015 and background sites (Gosan) during 2010-2014 on Jeju Island. The RF at the two sites was estimated based on a simplified expression for calculating RF for the study period. Overall, annual mean CO2 concentrations at the Yeon-dong and Gosan sites have gradually increased, and the concentrations were higher at Yeon-dong (401-422 ppm) than at Gosan (398-404 ppm). The maximum CO2 concentrations at the two sites were observed in winter or spring, followed by fall and summer, with higher concentrations at Yeon-dong. The RF at Yeon-dong (annual mean of up to 0.70 W/m2 in 2015) was higher than that at Gosan (up to 0.46 W/m2 in 2014), possibly because of higher CO2 concentrations at Yeon-dong resulting from population growth and human activities (e.g., fossil fuel combustion). The highest monthly mean RFs at Yeon-dong (approximately 0.92 W/m2) and Gosan (0.52 W/m2) were observed in spring 2015 (Yeon-dong) and spring 2013 (Gosan), whereas the lowest RFs (0.17 and 0.31 W/m2, respectively) in fall 2011 (Yeon-dong) and summer in 2012 (Gosan).
Long-term variations of PM10 and the characteristics of local meteorology related to its concentration changes were analyzed at 4 air quality sites (Ido-dong, Yeon-dong, Donghong-dong, and Gosan) in Jeju during two different periods, such as PI (2001-2006) and PII (2007-2013), over a 13-year period. Overall, the long-term trend of PM10 was very slightly downward during the whole study period, while the high PM10 concentrations in PII were observed more frequently than those in PI. The concentration variations of PM10 during the study period was clarified in correlation between PM10 and meteorological variables, e.g. the low (high) PM10 concentration with large (small) precipitation or high (low) radiation and in part high PM10 concentrations (especially, Donghong-dong and Gosan) with strong wind speed and the westerly/northwesterly winds. This was likely to be caused by the transport effect (from the polluted regions of China) rather than the contribution of local emission sources. The PM10 concentrations in “Asian dust” and “Haze” weather types were higher, whereas those in “Precipitation”, “Fog”, and “Thunder and Lighting” weather types were lower. The contribution of long-range transport to the observed PM10 levels in the urban center (Ido-dong, Yeon-dong, and Donghong-dong), if estimated by comparison to the data of the background site (Gosan), was found to explain about 80% (on average) of its input.
과거에는 생애주기에 기반 유지관리 계획에 대한 인식이 부족하였기 때문에 검측자료의 축적은 이루어졌으나 이러한 검측 자료를 이용한 구성품의 수명예측 및 보수보강 시나리오 선정 등 유지관리 의사결정 지원을 위해 사용되지는 못하였다. 이에 본 연구에서는 자료 분석을 위한 궤도 검측 데이터 필터링 및 정제기법을 개발하고, 검측데이터 분석 기법 적용을 통한 궤도의 성능 평가 지표 결정, 다변수 구간특성 및 환경인자를 고려한 레일 마모 및 궤도 틀림에 대한 민감도 분석, 파형과 파장을 고려한 검측데이터 분석 등을 수행하였으며, 이러한 연구 결과를 기반으로 하여 검측된 레일 마모데이터를 이용한 불확실성 기반 궤도성능 예측모델 개봘과 관련한 연구를 수행하였다.
This paper presents a new strengthening method for underground RC box structures against seismic loads. results confirmed that the proposed pre-flexed member system can enhance the seismic capacity of the underground RC box structures
오늘날 국내에서는 지진이 발생했을 때, 이에 대한 대비책으로 지진재해대응시스템을 운영 중에 있으며, 지진재해대응시스템은 각 시설물 별 지진취약도 모델을 통해서 시설물의 파괴확률을 산정하고, 지진재해 정도를 평가하고 있다. 이에 따라서, 본 논문에서는 지진발생시 1차 시설물의 붕괴뿐만 아니라 재산상, 인명상의 2차 피해를 동반하는 도시기반 네트워크 시설물인 가스시설물 중 매설 가스배관에 대하여 지진취약도 분석을 수행하였고, 국내의 지반특성을 고려하여 매설가스배관의 비선형 시간이력 해석을 수행하였으며, 확률론적 접근해석방법인 최우도추정법을 이용하여 지진취약도 모델을 개발하였다. 매설가스배관의 해석모델은 국내의 대표도시인 서울지역에 매설된 고압관과 중압관으로 선정하였으며, 지반은 가스관의 매립심도 설계기준에 따라 서울시 GIS(Geographic Information System)포털시스템과 지반조사편람에서 제공하는 자료를 분석하여, 매립토층과 퇴적토층의 물성치를 적용한 Winkler foundation 모델을 이용하였다. 또한 추가적으로 개발된 매설가스배관 취약도 모델의 GIS(Geographic Information System) 지리정보시스템 적용방안을 제시하였다.
The characteristics of atmospheric dispersion of radioactive material (i.e. 137Cs) related to local wind patterns around the Kori nuclear power plant (KNPP) were studied using WRF/HYSPLIT model. The cluster analysis using observed winds from 28 weather stations during a year (2012) was performed in order to obtain representative local wind patterns. The cluster analysis identified eight local wind patterns (P1, P2, P3, P4-1, P4-2, P4-3, P4-4, P4-5) over the KNPP region. P1, P2 and P3 accounted for 14.5%, 27.0% and 14.5%, respectively. Both P1 and P2 are related to westerly/northwesterly synoptic flows in winter and P3 includes the Changma or typhoons days. The simulations of P1, P2 and P3 with high wind velocities and constant wind directions show that 137Cs emitted from the KNPP during 0900~1400 LST (Local Standard Time) are dispersed to the east sea, southeast sea and southwestern inland, respectively. On the other hands, 5 sub-category of P4 have various local wind distributions under weak synoptic forcing and accounted for less than 10% of all. While the simulated 137Cs for P4-2 is dispersed to southwest inland due to northeasterly flows, 137Cs dispersed northward for the other patterns. The simulated average 137Cs concentrations of each local wind pattern are 564.1~1076.3 Bqm-3. The highest average concentration appeared P4-4 due to dispersion in a narrow zone and weak wind environment. On the other hands, the lowest average concentration appeared P1 and P2 due to rapid dispersion to the sea. The simulated 137Cs concentrations and dispersion locations of each local wind pattern are different according to the local wind conditions.
The characteristics of meteorological conditions related to changes in atmospheric environment on Jeju Island were investigated during recent years (2010-2012). This analysis was performed using the hourly observed data of meteorological variables (air temperature, wind speed and direction) and air pollutants (O3, PM10, SO2, NO2, and CO). Out of 5 pollutants, O3 and PM10 concentrations have frequently exceeded national environmental standards in the study area during the study period, with relatively higher concentrations than the others. The concentrations of O3 and PM10 in 2010 and 2011 were somewhat higher than those in 2012, and their highest concentrations were mostly observed in spring followed by fall. Nighttime O3 concentrations (with relatively high concentration levels) were almost similar to its daytime concentrations, due to less O3 titration by very low NO concentrations in the target area and in part to O3 increase resulting from atmospheric transport processes. The transport effect related to the concentration variations of O3 and PM10 was also clarified in correlation between these pollutants and meteorological variables, e.g. the high exceedance frequency of concentration criteria with strong wind speed and the high concentrations with the westerly/northwesterly winds (e.g., transport from the polluted regions of China). The overall results of this study suggest that the changes in atmospheric environment in the study area were likely to be caused by the transport effect (horizontal and vertical) due to the meteorological conditions rather than the contribution of local emission sources.
Emissions of air pollutants and greenhouse gases (GHGs) from aircraft activities at 11 small-scale airports were investigated using the emissions and dispersion modeling system (EDMS) version 5.1.3 during the two year period of 2009~2010. The number of landing and take-off (LTO) at these airports was dominant for the aircraft type B737, accounting for more than 60% of the total LTOs. Out of the 11 small-scale airports, Gwangju (GJ, RKJJ) airport was the largest emitter of air pollutants and GHGs, whereas Yangyang (YY, RKNY) airport was the smallest emitter. The emissions of NOx and VOCs in 2010 at the 11 airports ranged from 1.9 to 83 ton/y and 0.1 to 17 ton/y, respectively. In 2010, the emissions of CO2 ranged from 394 to 21,217 ton/y. The emissions of most air pollutants (except for NOx and PM10) and GHGs were estimated to be the highest in taxi-out mode. The highest emissions of NOx and PM10 were emitted from climb-out and approach modes, respectively. In addition, the total LTOs at the 11 small-scale airports accounted for the range of 9.3~9.9% of those at four major international airports in Korea. The total emissions of air pollutants and GHGs at the 11 airports ranged from 4.8 to 12% of those at the four major airports.