본 연구에서는 부산지방기상청 장기 강수량 자료(1973-2007)를 이용하여 부산지역 확률강수량 및 이에 따른 재현 기간을 산정하였다. 확률강수량 산정에 있어서 확률가중모멘트법을 이용하여 매개변수를 추정하였고, x2 및 PPCC 검정을 통해 적합성분석을 실시하였다. 분석결과 최적의 확률분포형으로 GLO 모형을 채택하였다. 또한 AWS 자료를 이용하여 부산지역 확률강수량 분포도를 작성하였다. 6시간 지속강수량에 있어서 245.2 mm의 강수량이 100년 마다 발생할 수 있으며, 280.6 mm가 200년에 한번 정도 나타날 수 있다. 확률강수량 분포도 결과 1시간 지속강수일 경우 동래구에서 높은 값을 가지며, 3시간 지속강수는 부산연안 전반에 걸쳐 높게 나타나고 있다. 6시간 지속강수량일 경우는 부산진과 양산일대에서 높은 값을 나타내며 12시간 지속강수의 경우 남동연안지역과 웅상 일대에서 높은 값을 보이는 특징이 나타났다.
본 연구에서는 2006년부터 2008년까지 3년간 봄철에 PM10과 PM2.5를 채취하여 질량농도와 금속원소의 화학적 특성, 기상인자와의 관계 분석, 황사 및 비황사시의 미세먼지 특성 그리고 이동경로에 따른 농도의 특성을 고찰하였다. 연구기간동안의 PM10, PM2.5, PM10-2.5평균농도는 각각 126.2±89.8, 85.5±41.6, 40.7±54.9μg/m3이었으며 PM2.5/PM10 및 PM10-2.5/PM2.5 비는 각각 0.70, 0.48이었다. 우리나라의 북서쪽인 북경을 포함한 지역과 서쪽인 상해를 포함한 지역에서 공기덩어리가 이류 할 때 가장 높은 미세먼지농도를 나타내었다.
최근 글로벌 IT시장에서 꾸준한 성장을 하고 있는 대만 IT산업에 대한 연구는 성장세에 비해서 학계에서의 관심이 많이 부족하고 필요한 상황이다. 특히 최근에 들어 중국 IT산업의 성장 배후에는 대만의 IT기업들이 있다는 점에서 대만 IT산업에 대한 이해는 피할수 없는 것이 현실이다. 그러므로 본 연구에서는 지난 30여 년간 급성장해 온 대만 IT산업이 정부, 산업, 기업 차원에서 다각도로 협력하여 성장하게 된 배경을 분석하고 여기에 따르는 시사점을 도출하고자 한다.
부산지역에서 PM10 과 PM2.5중의 금속 성분 농도를 파악하기 위하여 2004년 3월부터 2004년 12월까지 조사하였다. PM10의 평균농도는 58.2μg/m3 농도범위는 8.3~161.1μg/m3이었으며, PM2.5의 평균농도는 29.3μg/m3, 농도범위는 2.8~65.3μg/m3였다. PM10의 평균 질량농도는 황사시 121.5μg/m3, 비황사시 56.0μg/m3로 나타났다. 10 이상의 지각농축계수를 보인 성분은 Cd, Cr, Cu, Ni, Pb 및 Zn로서 인위적기원을 받은 것으로 추정된다. PM10과 PM2.5 중 미량금속 성분의 지각농축계수는 황사시보다 비황사시에 높게 나타났으며, 인근의 공단지역으로부터 인위적 오염물질이 수송된 것으로 추정된다. PM10과 PM2.5의 토양입자의 평균 기여율은 각각 15.2%와17.5%였다. 토양기여율의 황사/비황사비는 PM10과 PM2.5에서 각각 1.9와 2.1로 나타났다.
본 연구는 낙동강 하류역 강하먼지의 조성 특성을 파악하기 위하여, 광구병형 Dust jar를 사용하여 2002년 6월부터 2003년 5월까지 1년간 낙동강 하류역의 5개 지점에서 시료를 채취하였다. 채취된 강하먼지에 함유된 불용성 성분(Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Si, V, Zn) 및 수용성 성분(Cl-, NO3-, SO42-, NH4+, Ca2+, K+, MG2+)들은 ICP/AES, AAS, IC 및 UV를 이용하여 정량하었다. 성분에 대한 지각농축계수를 지역별로 비교한 결과 인위적인 오염원인 Cd, Cu, Pb, Zn에서 10 이상의 높은 값을 보였다. 특히 Pb는 감전동, 원동, 신라대, 삼랑진 및 물금 지점 순으로 감소하는 것으로 조사되었다. 계절별 토양입자의 기여율은 겨울철에 16.3 %로서 가장 높았으며, 1년간 평균 기여율은 11.2%이었다. 계절별[SO42-/NO3-] 당량비는 겨울철(5.12)이 가장 높았고, 가을철(3.30)이 가장 낮게 나타났다. 지역별로는 신라대, 감전동, 물금, 원동 및 삼랑진 순으로, 특히 도심에 인접한 지점의 경우가 높게 나타났으며, 평균 당량비는 4.28이었다. 총 강하먼지에 대한 수용성 이온성분의 총 침적량의 비율은 봄철(71.6%), 여름(61.2%), 가을(49.2%) 및 겨울철(48.6%)의 순으로 나타났으며, 평균은 57.6%이었다. 해염입자의 지역별 기여율 분포는 신라대(34.5%), 감전동(28.3%), 원동(17.3%), 삼랑진(17.2%) 및 물금(13.8%)의 순으로 나타났으며, 평균 기여율은 22.1%로 나타났다.
The study investigates weekday/weekend characteristics of PM10 and PM2.5 concentrations and meteorological elements in Busan. The PM10 concentration is highest on Wednesday and Thursday, and lowest on Sunday. On the other hand, the PM2.5 concentration is highest on Wednesday and lowest on Sunday. The location where concentrations of weekdays and weekend differ the most is Hwakjang-dong, the industrial area, and where they differ the least is Gijang-up and Joa-dong, the residential area. Fine particle concentration in the industrial area was consistent at dawn and in the morning, but varied in the afternoon and at night. The visibility of Sunday was 0.49 km higher than that of weekdays, and the solar radiation of Sunday was 0.11 MJ/㎡ higher than that of weekdays. These results indicate that the concentration of fine particles had influence on the change of visibility and solar radiation.
This study analyzes the chemical composition of metallic elements and water-soluble ions in PM10 and PM2.5. PM10 and PM2.5 concentrations in Busan during 2010-2012 were 97.2±67.5 and 67.5±32.8 ㎍/㎥, respectively, and the mean PM2.5/PM10 concentration ratio was 0.73. The contribution rate of water-soluble ions to PM10 ranged from 29.0% to 58.6%(a mean of 38.6%) and that to PM2.5 ranged from 33.9% to 58.4%(a mean of 43.1%). The contribution rate of sea salt to PM10 was 13.9% for 2011 and 9.7% for 2012, while that to PM2.5 was 17.4% for 2011 and 10.1% for 2012. PM10 concentration during Asian dust events was 334.3 ㎍/㎥ and 113.3 ㎍/㎥ during non-Asian dust events, and the PM10 concentration ratio of Asian Dust/Non Asian dust was 2.95. On the other hand, the PM2.5 concentration in Asian dust was 157.4 ㎍/㎥ and 83.2㎍/㎥ in Non Asian dust, and the PM2.5 concentration ratio of Asian Dust/Non Asian dust was 1.89, which was lower than that of PM10.
In order to understand chemical characteristics and formation of dewfall in Busan, we analysed monthly distribution of dewfall, and investigated its chemical composition of dewfall. This study used the modified teflon plate (1m × 1m) at Jangyongsil science high school from June 2005 to October 2005. In order to estimate qualitatively water soluble components, IC, ICP and UV methods for water soluble ions are also used respectively. Dewfall amount of sampling periods (26 day) collected 1.29 ㎜. Distribution of water soluble ions in dewfall founded the highest concentration (81.3 μeq/ℓ for NO3-, 146.6 μeq/ℓ for SO42-, and 114.3 μeq/ℓ for nss-SO42-) during the June. pH was the lowest by 5.12 June, and October (pH 6.68) by most high and average pH was 5.46. Monthly equivalent ratio of [SO42-]/[NO3-] showed the highest value (2.94) during the September, the lowest value (1.77) during the July, and the mean value was 3.45.
In order to understand chemical characteristics and dewfall formation in western Busan area, we analysed monthly distribution of dewfall, and investigated the correlation between dewfall formation amount and meteorological factors. This study used the modified teflon plate (1m×1m) at Silla university in Busan from August 2002 to April 2003. In order to estimate qualitatively water soluble components, IC, ICP and UV methods for water soluble ions are also used respectively. Dewfall amount of sampling periods (47 day) collected 3.8 ㎜. Meteorological conditions for the formation of dewfall above 50 g/m2 showed that temperature diurnal range(℃) was 5.6℃ above, cloud amounts (1/10) at dawn of the sampling day was 7/10 below, mean wind speed at dawn (0~6hr) of the sampling day was 4.4 m/sec below, and mixing ratio at 6hr of the sampling day was 3.2 g/kg above. Distribution of water soluble ions in dewfall founded the highest concentration (206.1 μeq/ℓ for SO42-, 42.4 μeq/ℓ for NH4+, 249.2 μeq/ℓ for Ca2+, and 42.0 μeq/ℓ for Mg2+) during the March, the lowest concentration (73.0 μeq/ℓ for SO42-, 4.6 μeq/ℓ for NH4+ and 72.7μeq/ℓ for Ca2+) during the August. Monthly equivalent ratio of [SO42-]/[NO3-] showed the highest value (4.99) during the October, the lowest value (1.84) during the August, and the mean value was 3.45.
The PM10 concentration and chemical composition in an western area of Busan were surveyed between March, 2001 and February, 2002. The mean concentration was 98.2 ㎍/㎥ with a range of 18.1 to 330.6 ㎍/㎥. The magnitude of metallic elements in PM10 is as follows in decreasing order: K>Ca>Na>Al>Fe. The mean values of crustal enrichment factors for four elements (Cd, Ni, Pb and Zn) were all higher than 10, which presumably resulted from the effect of anthropogenic origin. Moreover, the wintertime values were higher than springtime and summertime values, possibly due to emissions westerly transported from industries around this area. The contribution of soil particle to airborne particle in the study area was estimated to be 9.5%.
Weather elements were observed by the AWS (Automatic Weather System) and dustfall particles were collected by the modified American dust jar (wide inlet bottle type) at 4 sampling sites in Busan area from March, 1999 to February, 2000. Thirteen chemical species (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Si, and Zn) were analyzed by AAS and ICP.
The purposes of this study were to estimate qualitatively various bulk deposition flux of dustfall and insoluble components by applying regional and seasonal wind intensity. Frequency of wind speed were found in order of low(1-3㎧), very low(<1㎧), medium(3-8㎧) and high(>8㎧), and annual mean had higher range at low(1-3㎧) for 56.3%. Strong negative linear correlation were observed between dustfall and wind direction (northeastern and eastern), but strong positive linear correlation were observed between dustfall and wind direction (western and northwestern) at industrial, commercial and coastal zone(p<0.05). While a negative correlation were observed between wind speed frequency of very low(<1㎧) and dustfall, and positive correlation were observed between wind speed frequency of low(1-3㎧) and dustfall in coastal zone(p<0.05). The correlation coefficient was observed 0.556 between wind speed frequency of low(1-3㎧) and Ni by commercial zone(p<0.05). The correlation coefficient show well-defined insoluble trace metals (Al, Ca, Cr, Cu, Fe, Pb, and Zn) and wind speed frequency of low(1-3㎧) at coastal zone, which was found significant difference(p<0.01).
Dustfall particles were collected by the modified American dust jar (wide inlet bottle type) at 6 sampling sites in Pusan area from March, 1999 to February, 2000. Thirteen chemical species (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Si, and Zn) were analyzed by AAS and ICP.
The purposes of this study were to estimate qualitatively various bulk deposition flux of dustfall and insoluble components by applying regional and seasonal distribution. Dustfall amount of regional variations were found in order of coastal zone, industrial zone, commercial zone, agricultural zone and residential zone, and seasonal total dustfall had higher concentrations during spring for 6.741 ton/㎢/season, lower concentrations during summer for 1.989 ton/㎢/season, and annual total concentration was 17.742 ton/㎢/year.
The regional distributions of enrichment factor show well-defined anthropogenic metals (Cd, Cu, Pb, and Zn) at industrial and agricultural zone, and contribution rate of soil particles were found in order of summer, fall, winter and spring. Factor loading effects of chemical composition of dustfall were found in order of road traffic emission source and combustion processed source, industrial activity source, soil source and marine source.
This study was carried out to investigate the characteristics of acidity in the precipitation and weather patterns that were influenced it at Kimhae area from March, 1992 to June, 1994.
The range of pH value in the precipitation at Kimhae is 3.45 to 6.80 and the average is pH 4.62, and the major anion components associated with acidity in the precipitation are Cl-, SO42- , NO3-. These distributions are to be expected the influence of industrialization such as, urbanization and construction of industrial complex at Kimhae area and the long range transporting of air pollutants from China.
The weather patterns governing the acid rain at Kimhae were classified broadly into four types(Cyclone(type I-a, type I-b), Migratory Anticyclone(type Ⅱ), Tropical Cyclone(type Ⅲ), Siberia High(type Ⅳ)) and weather pattern which had the most occurrence frequency of acid rain was type I-a and the average pH value of precipitation in this pattern was 4.45, and we are found that the source area of air mass which was accompanied with high acidic precipitation in Kimhae was the central China include with Peking through the analysis of surface weather maps, 850 hPa wind fields, and the streamline analyses.
This study was carried out to investigate the characteristics of chemical components and precipitation at Kimhae area from March, 1992 to June, 1994. The pH values, concentration of soluble ions(Cl^-, NO_2^-, NO_3^-, SO_4^2-, PO_4^3-, F^-, Mg^2+, Ca^2+, Mn^2+, K^+) and nonsoluble metals(Cr, Si, Zn, Pb, Cu, Fe, Mn, Mg, Al, V, Ca) were measured by pH meter, IC(Ion Chromatography) and ICP(Inductively Coupled Plasma). The data were analyzed by the daily, hourly distribution characteristics of acidity and chemical components, as well as the correlation between them.
The results are as follows.
1. The pH range of precipitation was from 3.45 to 6.80 in Kimhae area, and average value was pH 4.62 and main chemical components were SO_4^2-, Cl^-, NO_3^-. The highest pH value and concentration appeared in initial rain, which might result from urbanization and industrialization in this area and long term transportation from China.
2. The hourly correction distribution of main anions related to pH value in the rainwater showed SO_4^2- > NO_3^- > Cl^-. Hourly concentration of heavy metal and each ion was highly correlated with pH in the precipitation.
This paper aims to describe the indoor-outdoor air quality in school environment through the analyses of heavy metal concentration by Inductively Coupled Plasma(ICP), which were observed at some school environment, such as traffic area, industrial area, seme-industrial area, and residence area.
The results are as follows ;
(1) Regardless indoor and outdoor, the area with the highest concentration of heavy metal is industrial area followed by traffic area, residence area and semi-industrial area in descending order of magnitude. And the heavy metal concentration of indoor is higher than that of outdoor.
(2) The main heavy metal components with more high level concentration of indoor than those of outdoor are Zn, Al, Ca and these heavy metal concentrations are higher in class than in corridor and outdoor.