In this study, it is an object to develop a regression model for the estimation of TOC (total organic carbon) concentration using investigated data for three years from 2010 to 2012 in the Gam Stream unit watershed, and applied in 2009 to verify the applicability of the regression model. TOC and CODMn (chemical oxygen demand) were appeared to be derived the highest correlation. TOC was significantly correlated with 5 variables including BOD (biological oxygen demand), discharge, SS (suspended solids), Chl-a (chlorophyll a) and TP (total phosphorus) of p<0.01. As a result of PCA (principal component analysis) and FA (factor analysis), COD, TOC, SS, discharge, BOD and TP have been classified as a first factor. TOCe concentration was estimated using the model developed as an independent variable BOD5 and CODMn. R squared value between TOC and measurement TOC is 0.745 and 0.822, respectively. The independent variable were added step by step while removing lower importance variable. Based on the developed optimal model, R squared value between measurement value and estimation value for TOC was 0.852. It was found that multiple independent variables might be a better the estimation of TOC concentration using the regression model equation(in a given sites).