최근 지구온난화로 인한 피해가 심각해짐에 따라 화석연료 사용을 줄이고자 친환경 수소 에너지의 활용이 증가하고 있다. 이에 따라 수소의 저장 및 운송을 위한 수소 저장 용기의 수요가 확대되고 있으나, 현재 널리 사용되고 있는 강재 기반 저장 용기는 부식과 같은 내구성 저하 현상에 취약하다. 따라서 선행 연구는 지지부 부식에 따른 내진 성능 저하 문제를 해결하기 위해 부식 저항성 이 뛰어난 CFRP를 지지부 기둥을 적용하여 설계 하중에서 적용성을 검토하였다. 이때 본 연구는 CFRP의 강도-중량비가 높음을 고려 하여 기존 강재 구조물 지지부 ㄱ 단면 대비 높은 강성을 가진 H 단면과 ㅁ 단면을 지지부 기둥에 적용하여 연구를 수행하였다. 이때 실제와 가까운 해석 결과를 도출하기 위해 고유진동수 추출해석을 진행하여 감쇠 계수를 적용 시켰고, AC 156 인공 지진을 설계 하중 으로 적용한 결과, ㅁ 단면을 적용한 강재 기둥의 접합부 응력은 222.34 MPa로 기존 ㄱ 형강 대비 78.93%로 설계 하중에 만족함을 보였다. ㅁ 단면 적용 CFRP 기둥은 파손 지수(DI)를 통해 평가하였고, 이때 최대 DI는 수지 인장에서 발생하였으며, 그 값은 0.708로 파괴 기준 대비 29.2% 낮아 설계 하중에 만족함을 보였다. 또한, 기초 슬래브에서 쪼갬 인장 응력과 휨 인장 응력을 통한 평가를 진행 하였고, 현장 실험 결과와 마찬가지로 설계 하중에 휨 인장 파괴가 발생하는 것으로 확인하였다. 하지만 파단 시점은 CFRP에서 1.54배 오래 설계 하중에 견디는 것을 확인하여, 그 적용성을 확인하였다. 결론적으로 지진의 발생 빈도가 높아짐에 따라 수소 저장 용기의 안전성 확보가 시급하다. 따라서 기존 강재 대상 구조물의 부식으로 인한 강성 저하 문제를 해결하기 위해, 높은 내구성 및 부식 저항성 재료의 적용은 필수적이다. 동시에 기초 슬래브의 안전성 확보에 대한 연구가 추가적으로 수행되어야 한다.
The automotive industry continuously strives to enhance safety for both drivers and passengers through technological advancements. Car side impacts have the potential to significant risks to passengers, So the automotive industry has proposed various technological solutions. As part of these efforts, the development of side impact beams, which are affixed to the inner frame of vehicle side doors to absorb and dissipate collision energy, has been a safety enhancement. Conventional side impact beams are manufactured using hot-rolled steel sheets and have a pipe-like configuration. However, these impact beams are fixed to the vehicle's chassis, which directly transfers the energy generated during a collision to the chassis frame. This paper aims to address this issue by proposing the development and optimization of vehicle door impact beams using a dual-beam structure and fastening method, utilizing shear bolts. Moreover, the focus is on optimizing the cross-sectional shape of the dual-beam impact structure. The evaluation criterion for optimization is based on the second moment of area of the cross-section. To validate these improvements, Static experiments were conducted, comparing the proposed dual-beam structure with the traditional impact beam. This research is expected to serve as a guideline for enhancing vehicle safety through design directions and validation methods.
This study investigates the optimization of sectional shape with two dimensions on the rubber gasket of electric vehicle battery in order to maintain the airtightness and watertightness. For the section optimization, the shape of protruding section was analyzed as design variables and the design point was composed by the design of experiment(DOE) for the selected protruding shape. The uniaxial tensile test was carried out for the analysis of rubber gasket and five parameters of Mooney-Rivlin hyperelastic model were derived from the test data in order to construct the strain energy function for nonlinear behavior. The rubber gasket compression analysis was performed by using ANSYS of a commercial software and the performance of optimal shape was verified by performing the tests of watertightness and airtightness on the 3D rubber gasket with the derived section.
최적설계기법을 사용한 경제적인 설계의 필요성은 오래 전부터 요구되어 왔으나, 종전의 설계가 설계자의 경험에 의한 시행착오적인 반복설계를 통하여 이루어져 왔기 때문에 구조물의 형상이 복잡한 경우에는 계산상의 어려움과 반복계산을 되풀이해야 하는 번거로움으로 진정한 최적설계는 기대하기 어려웠다. 최적설계법이 구조물의 설계에 매우 유용하다는 사실이 증명되고 있긴 하지만, 아직도 최적설계의 의미를 제대로 이해하지 못하고 있는 실정이며, 더구나 설계실무자는 어디까지나 사용자이기 때문에 수리적 계획수법에 친숙할 필요까지는 없지만 최소한 이런 기법의 가능성과 중요성을 이해할 필요는 있는데 대부분 그러하지 못하고 있는 실정이다. 일반적으로 트러스 구조물 설계 시 주어진 부재의 응력에 따라 단면적을 산출하여 그 단면적에 역학적으로 가장 합리적인 단면을 선정하여 경제적인 설계단면을 구한다. 그러나 트러스의 형상, 트러스 높이에 따른 경제성의 문제는 보통 설계자의 경험과 직관에 의하여 결정되고, 특별한 검토가 이루어지지 않고 설계가 수행되는데, 실제 트러스 구조물에서 트러스의 형상과 높이가 전체 건설공사비에 크게 영향을 미친다. 그러므로, 트러스 구조물의 최적설계에서 트러스 형상, 라이즈 비(rise ratio : 높이/스팬) 및 격간 수(number of panel)를 고려하는 것이 필요하다. 트러스 형상과 스팬에 따른 최적형상과 최적높이 및 격간 수에 대해 설계자의 초기 구조계획 시 주관적 선택의 어려움을 해결하고, 실제의 지붕형 트러스 구조에 설계하중을 작용시켜 응력해석에서부터 부재 단면설계까지의 자동화된 최적설계 알고리즘을 개발할 필요가 있다. 따라서 본 연구는 플랫 트러스의 형상, 격간 수, 격간의 간격 및 부재단면 등에 대하여 이산적인 변수의 처리와 넓은 설계 공간의 탐색능력과 더불어 문제의 비선형성과 관계없이 전체 최적해를 찾아낼 수 있는 유전자 알고리즘을 이용한다. 또한, 강 구조 한계상태설계기준(대한건축학회, 1998)을 기준으로 하여 자동으로 플랫 트러스의 구조계획과 단면이산화 최적설계를 동시에 수행할 수 있는 최적화 알고리즘을 제시하는 것을 목적으로 한다.
FRP바닥판은 경량이기 때문에 신속한 시공이 가능하고, 고정하중을 경감시킬 수 있다는 장점이 있어 전 세계적으로 시공 실적이 점차 증가하고 있다. 본 논문에서는 효과적인 FRP바닥판의 적용을 위하여 유한요소해석을 통하여 FRP바닥판을 구성하는 부재별 적정 형상비를 결정하였으며, 향후 FRP바닥판 설계시 기초자료로 활용할 수 있도록 하고자 하였다. 또한, FRP의 이방적 재료 특성과 복잡한 제약조건을 고려한 FRP바닥판의 최적설계를 수행하였으며, 그 결과를 토대로 제안된 FRP바닥판의 기본 단면 형상에 대한 검증을 수행하였다