본 연구에서는 미용분야 창업 활성화를 위해 소셜 빅데이터 분석을 탐색적 데이터 분석(EDA) 을 기반으로 하여 2019년부터 2021년 동안 각 년도별로 기간을 구분하여 ‘미용창업’에 대한 수요 변화와 감정 및 의미 차이의 특징적인 패턴을 도출하고자 하였다. ‘미용창업’ 키워드를 주제로 연관된 검색어를 추 출한 결과 창업에 필요한 전문적인 창업교육 보다는 미용관련 기술을 배울 수 있는 기관이나 자격증에 더 많은 관심을 보였으며, 이는 정부 및 지자체에서 여러 가지 창업지원 정책들이 마련되고 있음에도 불구하 고 여전히 전문적인 창업교육의 중요성을 인식하지 못하고 있는 것으로 파악할 수 있으며, 이에 대한 대안 으로 미용분야 창업을 성공적으로 이루기 위한 전공별 맞춤형 창업교육 프로그램을 개발하는 것이 필요할 것으로 사료된다. 탐색적 데이터 분석을 통해 가설을 설정하고 전통적인 확증적 데이터 분석(CDA)을 결합 하여 가설을 검증한다. 미용 창업을 위한 탐색적 데이터 분석 방법이 존재한 적은 없으며, 정식 창업교육의 필요성을 언급하기보다는 미용창업에 대한 관심 변화와 예비창업자의 요구사항을 탐색적 데이터로 분석한 다면 맞춤형 창업 프로그램 개발에 도움이 될 것이라고 확신한다.
The paper reviews the methodologies of confirmatory data analysis(CDA) and exploratory data analysis(EDA) in statistical quality control(SQC), design of experiment(DOE) and reliability engineering(RE). The study discusses the properties of flexibility, openness, resistance and reexpression for EDA.