본 연구는 초등학교 학습자들의 지질학적 시간 개념 인식에 따라 퇴적암 형성 과정을 어떻게 이해하고 있는지를 알아보기 위한 연구이다. 연구의 실행은 B 광역시에 위치한 U 초등학교 4학년 학생 57명을 최종 분석의 대상으로 진행되었으며, 데이터의 수집은 Jolley et al. (2012)이 개발한 LIFT (The Landscape Identification and Formation Test) 검사 도구를 수정 및 번안하여 객관식 문항을 구성하고, Charles and McConnell (2018)이 활용한 지질학적 경관 형성에 대한 인터뷰의 구조를 서술식 문항으로 제작하여 데이터를 수집하였다. 서술형 문항 응답 결과를 질적으로 분석하여 학생들의 지질학적 시간 개념 표출 유형을 기준으로 세 군집으로 분류하였다. 분류된 군집은 각각 구체적 시간 개념 군집(Specific time concept cluster), 막연한 시간 개념 군집(Vague time concept cluster), 시간 개념 미표현 군집(No time concept cluster)으로 명명되었으며, 각 군집별로 퇴적암 형성 과정에 대한 단답형 문항의 점수를 활용하여 통계적 검증을 수행하 였으며, “구체적 시간 개념” 군집은 “시간 개념 미표현” 군집에 비해 퇴적암 형성 과정에 대한 이해가 통계적으로 유의 미하게 높은 것을 확인하였다. 또한 그 구체적 사례에서 Ault (1982)가 언급한 지질학적 연대에 대한 과소 추정과 과대 추정의 사례를 발견하였다. 또한 각 군집별로 수집된 서술형 문항(퇴적암 형성 과정에 대한 서술)을 바탕으로 언어 네트 워크를 형성하고, 중심도 분석을 실시하여 시각화한 후 분석하였다. 분석 결과, 구체적 시간 개념 군집은 퇴적암 형성의 모든 과정에 대해 비교적 잘 인식하고 있으며, 지질학적 시간 개념이 현상과 잘 연결되어 있는 것을 확인하였다. 또한, 막연한 시간 개념 군집은 퇴적암 형성 과정에서 퇴적, 압축, 교결, 암석화, 노출의 과정이 비교적 잘 연결되어 있지 않지 만, 지질학적 시간 개념은 비교적 잘 인식하고 있었으며, 시간 개념 미표현 군집은 퇴적암 형성 과정에서 퇴적, 압축, 교 결 작용을 중심으로 설명하고 있으며, 지질학적 시간 개념의 인식 또한 거의 이루어지지 못하고 있다는 것을 확인하였 다. 추가로, 각 군집별 시간 노드의 커뮤니티가 가지는 중심도를 활용해 커뮤니티 분석을 실시간 결과, “시간 개념 미표 현” 군집은 퇴적암의 형성 과정을 시간 개념과 연관시키는 것에 어려움을 겪는 것을 확인하였다.
The stratigraphy and evolution of the intertidal deposit of Gunhung Bay, west coast of Korea, have been studied by analyzing surface sediments, core sediments and subbottom profiles. The surficial sedimentary facies consists of upper mudflat, mixedflat and lower mudflat from high tide level to low tide level. The tidal deposit above the acoustic basement is 5 - 20m thick and can be divided into two sedimentary sequences by a mid-reflector. The boundary of them is identified by long core data. The lower sedimentary unit (sequence B) consists of semi-consolidated, brown sandy muds and is interpreted to be deposisted during Riss-Wurm interglacial period. The upper sedimentary unit(sequence A), which overlies the sequence B unconformably, is about 10m thick and consists of Holocene intertidal sediments. The sequence A consists of mudflat facies at lower part and mixedflat facies at upper part. It indicates that the sequence A is a transgressive sequence. Many V-shaped erosional patterns at the unconformable contact of sequence A and sequence B indicate the existence of old tidal channels formed during the low sea level of the last glacial period. The long-term accumulation rate of sequence A is considered to be 2㎜/yr from core data and it is coincident with the accumulation rate determined by Pb-210 for the PVC core.
남해 섬진강 하구유역에 발달되어 있는 남해중앙니질대는 흑산머드벨트의 퇴적물들과 섬진강의 퇴적물들을 공급받는 것으로 알려져 있다. 그러나 니질 퇴적체를 형성하기 위해서는 위 지역에서 공급되는 퇴적물보다 더 많은 양의 퇴적물이 공급되어야하기 때문에, 추가적인 퇴적물 공급원에 대한 연구가 필요하다. 본 연구에서는 남해중앙니질대 퇴적물의 기원지 및 퇴적물 유입경로의 변화를 알아보기 위해, 16PCT-GC01 및 16PCT-GC03 코어에 대해 점토광물 및 주성분원소 분석을 수행하였다. 황하 퇴적물은 스멕타이트의 함량이 높고, 양쯔강 퇴적물은 일라이트의 함량이 높으며, 한국 강 퇴적물들은 카올리나이트와 녹니석의 함량이 높다. 또한 한국 강 퇴적물은 Al, Fe, K가 풍부하고, 중국 강 퇴적물은 Ca, Mg, Na 등이 풍부하다. 따라서 점토광물과 주성분원소를 이용해 퇴적물의 기원지를 추적할 수 있다. 연구 결과, 남해중앙니질대의 코어 퇴적층은 총 3개의 퇴적 단위(sediment unit)로 구분 할 수 있다. 해수면이 가장 낮은 저수위기(lowstand stage)에 해당되는 퇴적 단위 3은 황하로부터 공급된 퇴적물이 연안류 혹은 조석 작용에 의해 연구지역으로 공급된 것으로 해석되고, 해수면이 빠르게 상승하는 해침기(transgressive stage)에 해당되는 퇴적 단위 2는 황하의 영향이 약해지고 양쯔강과 한국 강들의 영향이 강해지는 것으로 해석된다. 현재와 같은 해수면과 해류의 순환이 형성된 고수위기 (highstand stage)에 해당되는 퇴적 단위 1은 양쯔강과 한국 강으로부터 퇴적물이 해류를 통해 연구지역으로 공급된 것으로 해석된다.
본 연구에서는 실내실험을 통하여 개량형 공압식 가동보를 대상으로 보의 기립각도를 고려한 유사의 퇴적과 델타의 발달 과정을 파악하였다. 가동보 상류에서 유입되는 유사는 배수의 영향으로 유속이 느려지면서 퇴적이 되고 델타가 형성되며 하류로 이동하였다. 각 실험조건에 대하여 시간에 따른 델타의 이동속도는 델타는 시간이 지나면서 현저하게 감소하고, 보에 접근하였다. 무차원 델타의 높이(hd/h)가 증가할수록 무차원 델타의 이동속도(SD/V0)는 감소하였다. 따라서 델타의 높이(hd)가 증가할수록 수심(h)은 감소하였다. 델타의 유효높이(hw)가 크기 때문에 델타의 체적 (VxD)은 증가하지만 배수(backwater)의 영향을 받아 델타의 이동속도(SD)와 퇴적량은 감소하였다. 수로 경사가 일정할 때, 보의 높이(W)가 클수록 델타체적(VxD)이 증가하고, 델타의 전면부 길이비(hd/△S)는 1에 가깝다. 같은 유량조건인 경우에 가동보의 기립 각도가 가장 클 때, 시간당 델타의 퇴적량(Qs)은 가장 작았다. 따라서 보의 높이(W)가 클수록 델타의 발달을 억제할 수 있는 효과가 크다.
In the past, the predictions of beach processes and harbor sedimentation were mainly relied on the hydraulic model tests and empirical methods. In recent years, however, as computers have come into wide use, more accurate models have gradually been developed and thus replaced those conventional methods. For prediction of topographical change near the coastal area, we need informations of wave and current conditions in the numerical model which should be calculated in advance. Numerical model introduced in this study combines wave refraction-diffraction, breaking, bottom friction, lateral mixing, and critical shear stress and three sub-models for simulating waves, currents, and bottom change were briefly discussed. Simulations of beach processes and harbor sedimentation were also described at the coast neighboring Bangpo Harbor, Anmyundo, Chungnam, where the area has suffered accumulation of drifting sand in a small fishing harbor with a wide tidal range. We also made model test for the new layout of the harbor and planned south breakwater for preventing intrusion of sand. Although the model study gave reasonable description of beach processes and harbor sedimentation mechanism, it is necessary to collect lots of field observation data, including waves, tides and bottom materials, etc. for better prediction.