In the case of a school building, even though it is a regular structure in terms of plan shape, if the masonry infill wall acts as a lateral load resisting element, it can be determined as a torsionally irregular building. As a result, the strength and ductility of the structure are reduced, which may cause additional earthquake damage to the structure. Therefore, in this study, a structure similar to a school building with torsional irregularity was selected as an example structure and the damping performance of the PC-BRB was analyzed by adjusting the eccentricity according to the amount of masonry infilled wall. As a result of nonlinear dynamic analysis after seismic reinforcement, the torsional irregularity of each floor was reduced compared to before reinforcement, and the beams and column members of the collapse level satisfied the performance level due to the reduction of shear force and the reinforcement of stiffness. The energy dissipation of PC-BRB was similar in the REC-10 ~ REC-20 analytical models with an eccentricity of 20% or less. REC-25 with an eccentricity of 25% was the largest, and it is judged that it is effective to combine and apply PC-BRB when it has an eccentricity of 25% or more to control the torsional behavior.
The energy dissipation of inverted V-type eccentric steel braced frames can be achieved through the yielding of a slit link, through yielding of a number of strips between slits when the frame is subjected to inelastic cyclic deformation. On the other hand, the development of seismic resistance system without residual deformation is obtained by applying the superelasdtic shape memory alloy (SMA) material into the brace and link elements. This paper presents results from a systematic three-dimensional nonlinear finite element analysis on the structural behavior of the eccentric bracing systems subjected to cyclic loadings. A wide scope of structural behaviors explains the horizontal stiffness, hysteretic behaviors, and failure modes of the recentering eccentric bracing system. The accurate results presented here serve as benchmark data for comparison with results obtained using modern experimental testing and alternative theoretical approaches.
편심가새골조(EBF)의 역량설계법에 의하면, 링크가 완전항복 및 변형경화 상태일 때 기둥, 링크외부보, 가새(비소산 부재)는 탄성 거동해야 한다. 현행 AISC 341은 역량설계에 필요한 변형도경화계수(SHF)를 1.25로 제시하고 있으나, 실제로 건물이 고층 규모일수 록 모든 링크가 이처럼 동등한 수준의 초과강도에 도달할 가능성은 매우 낮아진다. 본 연구에서는 링크의 SHF를 정밀하게 예측하는 방법을 제안함으로써, 역량설계법의 목적을 달성하면서 구조물량을 절감하고자 하였다. 제안한 방법의 효과를 검증하기 위해 선형해 석을 2회 수행하여 SHF를 예측하고, 이를 비선형 해석결과와 비교하였다. 다음으로 비선형 해석에 의한 응답을 분석하여 구조물의 한 계상태에서 비소산 부재들의 항복 여부를 확인하였다. 그 결과, 본 연구의 방법으로 설계된 구조물은 링크의 SHF를 정확히 예측함으 로 인해 물량이 큰 폭으로 절감되었으며, 비소산 부재들도 모두 탄성상태를 만족하는 것으로 나타났다.
본 연구에서는 철골편심가새골조 시스템을 대상으로 다목적최적화기법을 통해 설계를 수행하고 그 결과를 분석하였다. 최적화 설 계를 위해 유전 알고리즘의 일종인 NSGA-II를 활용하였다. 여기서, 목적함수는 이율배반적 관계를 갖는 구조물량과 층간변위로 하여 최소화되고, 제약조건에는 구조기준에서 요구하는 내력비, 링크의 회전각 등을 포함하였다. 제약조건은 최적화 알고리즘 내에서 각 항목을 위반할수록 목적함수 값을 크게 증가시키는 벌금함수의 형태를 가지고 있다. 설계기준에서 EBF 시스템의 설계규정은 링크 부재만 항복이 허용되며 나머지 부재는 링크 항복 시 발생되는 부재력을 탄성상태에서 견디도록 의도한 역량설계법에 기초한다. 그러나 최적화를 통해 도출된 결과 중 일부는 구조기준의 설계조항은 만족하지만 특정층 링크에 소성변형이 집중되어 연약층을 형성함 으로써 기준에서 의도하는 역량설계의 원칙을 위배하는 결과가 나타났다. 이를 해결하기 위해 모든 링크의 전단 초과강도계수 중 최 대값이 최소값의 1.25배를 넘지 않도록 하는 제약식을 추가하였다. 새로운 제약식을 추가한 경우 모든 최적해는 설계기준과 역량설계의 원칙을 준수하는 것으로 나타났다. 모든 설계안에서 보 경간에 대한 링크의 길이비는 전단링크의 범주에 해당하는 10% ~ 14%였다. 전체적으로 설계안들은 링크의 초과강도 계수비가 가장 지배적인 제약으로 작용하였으며, 구조기준의 요구사항 중 층간변위와 내력비 등의 항목에서 허용치에 비해 매우 보수적으로 설계되었다.