본 연구에서는 Clark 모형의 시간-면적곡선의 구성 방법과 적용성을 검토하고 모멘트 원리에 의한 도달시간, 저류상수를 합리적으로 산정하기 위한 방법론을 고찰해 보았다. 격자 기반으로 폭 함수를 구성하고 운동과정을 순수 이류현상으로 가정하여 시간-면적곡선으로 사용하였다. 또한 도달시간과 저류상수는 모멘트 법의 원리에 따라 Clark 모형 구조에 적용하여 해석적으로 산정할 수 있는 방법을 제시하였다. 적용성 검토를 위해 (1) HEC-1에서 기본적으로 제공하는 좌우 대칭형상인 무차원 시간-면적곡선을 적용하고 매개변수 산정은 관측유출수문곡선과 계산된 유출수문곡선의 오차를 최소화하는 HEC-1의 최적화 기법 사용, (2) HEC-1에 폭 함수 기반의 시간-면적곡선을 적용하고 매개변수 산정은 HEC-1의 최적화 기법 사용, (3) 폭 함수 기반의 시간-면적곡선을 이용하여 모멘트 원리에 따라 매개변수를 직접 산정하는 방법을 적용하였다. 방법별로 산정된 Clark 모형의 매개변수들을 HEC-1을 이용하여 직접유출량을 산정하고 관측 직접유출량과 비교하여 얻은 결과는 다음과 같다. (1) 정량적으로 비교하기 위해 산정한 첨두유량과 첨두발생 시간의 상대오차 및 효율계수 E(Efficiency Coefficient)를 비교한 결과, 시간-면적곡선을 폭 함수로 대체하여 HEC-1으로부터 추정된 매개변수가 관측값을 잘 반영하였다. (2) Clark 모형의 올바른 적용을 위해서는 HEC-1에서 기본적으로 제공하는 좌우 대칭형상인 무차원 시간-면적곡선보다는 적용 대상유역의 배수구조가 적절하게 반영된 시간-면적곡선의 사용이 합리적일 것으로 판단된다. (3) 본 연구 방법은 첨두유량과 첨두시간의 상대오차 범위와 재현정도를 나타내는 효율계수를 비교하여 볼 때 대체로 양호하게 모의되었고, 대상유역별 유량측정성과인 하천평균유속과 비교했을 때 본 연구 방법이 다소 실제 유속에 접근하고 있음을 확인하였다. (4) 본 연구에서 모멘트 원리를 기반으로 제안한 매개변수 추정을 위한 방법은 유역의 이류현상과 저류현상을 정량적으로 계량할 수 있는 효율적인 관계식으로 사용할 수 있음을 확인하였다. (5) 본 방법에 의해 계산된 수문곡선이 대부분 관측수문곡선의 우측으로 왜곡되고 첨두유량은 과소평가 되는 것을 보이고 있다. 이것은 평균과 분산만을 고려하여 유역을 하나의 평균이송속도로 모의한 본 연구의 한계점으로 판단된다. 만약 모멘트의 왜곡도를 고려하고 유역을 지표면과 하천으로 나누어 평균이송속도를 모의한다면 물리적인 특성을 충분히 반영하여 매개변수를 추정 할 수 있을 것으로 판단된다.