본 연구에서는 폴리비닐알콜(PVA)와 폴리프로필렌글리콜(PPG)기반의 창상피복용 수분산 폴리우레탄수지를 합성하였으며, 시료의 물리적 특성을 필름 시료와 피혁(Full-Grain) 표면에 코팅을 하여 물리적 특성 변화를 연구하였다. 인장강도의 경우 PVA가장 적게 반응된 PUD-PA1 2.00 kgf/㎟ 으로 가장 높은 저항성을 보였으며. 마찬가지로 연실율은 PVA가장 적게 반응된 PUD-PA1가 554%로 높게 측정되었다. 내마모성 측정 결과 PVA 반응이 증가함에 따라 표면의 강도나 낮게 36.77 ㎎.loss로 감소 됨을 알수 있었다.
본 연구에서는 titanium nitride (TiN) 나노 섬유와 poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOTPSS) 전도성 고분자로 이루어진 전극과 poly(vinyl alcohol) (PVA) 기반 고분자 전해질 분리막을 이용하여 슈퍼 캐퍼시터를 제조하였다. TiN 나노 섬유의 경우 높은 전기 전도도와 이차원적 구조로 인한 스케폴드 효과를 기대할 수 있다는 점에서 전극 물질로 사용되었다. PEDOT-PSS 전도성 고분자는 수소 이온과 산화-환원 반응을 통해 보다 높은 정전용량을 나타낼 수 있으며 용액상에 분산이 용이해 유무기 복합제를 형성하기에 적합하였다. PVA 기반의 고분자 전해질 분리막은 기존의 액상의 전해질의 문제인 외부 충격에 대한 안정성을 확보할 수 있으며 염으로 사용된 H3PO4의 경우 수소 이온은 빠른 확산으로 인해 캐퍼시터의 충방전 효율에 이점이 있다. 본 연구에서 보고된 PEDOT-PSS/TiN 슈퍼캐퍼시터의 정전용량은 약 75 F/g으로 기존의 탄소기반 캐퍼시터에 비해 큰 폭으로 증가한 값이다.
Membrane fabrication is a critical area that hampers forward osmosis (FO) technology from industrialization. Herein, electrospun poly(vinyl alcohol) (PVA) nanofiber (NF) was used as a support layer for thin film composite (TFC) FO membrane. The PVA NF was incorporated with sulfonated graphene oxide (sGO). The oxygenous-rich sGO enhanced the hydrophilicity and mechanical strength of PVA NF as revealed by contact angle and tensile strength measurements, and pure water flux. On this support, the active polyamide layer was formed through interfacial polymerization. Meanwhile, FO performance of sGO/PVA TFC membrane is currently being evaluated. This work was supported by NRF of Korea funded by the Ministry of Science and ICT (2016R1A2B1009221 and 2017R1A2B2002109) and Ministry of Education (2009-0093816 and 22A20130012051 (BK21Plus)).
폴리스티렌-폴리히드록시에틸 아크릴레이트(PS-b-PHEA) 디블록 공중합체와 폴리비닐알콜(PVA)을 1 : 1 무게비로 블렌딩하여 수소 이온 전도성 가교형 고분자 전해질막을 개발하였다. 특히 술포석시닉산(SA)를 사용하여 디블록 공중합체의 PHEA 블록과 PVA와 가교반응을 시켰고, 이를 FT-IR 분광법을 이용하여 분석하였다. 이온교환능(IEC)은 SA 함량이 증가함에 따라 계속하여 증가하여 0.95 meq/g까지 도달하였고, 이는 전해질막에 이온 그룹수가 증가하기 때문이다. 하지만, 함수율은 SA 함량이 20 wt%까지는 증가하다 그 이상에서는 감소하였다. 또한 수소 이온 전도도도 SA 함량에 따라 증가하여 20 wt% SA농도에서 0.024 S/cm의 최대값을 나타내었다. 함수율과 수소이온전도도의 이러한 경향은 SA 함량이 증가함에 따라 이온 그룹의 수가 증가하는 효과와 가교가 증가하는 효과가 서로 경쟁적으로 일어나기 때문으로 생각된다.
Trifluoroethyl methacrylate (TFEMA)는 발수발유용 특수도료나 광섬유의 외관에 중요하게 쓰여지는 코팅제에 쓰여지는 산업적으로 중요한 단량체로, 주로 산촉매 하에 trifluoro ethanol (TFEA)와 methacrylic acid (MA)의 에스테르화 반응에 의해 제조된다. 이러한 TFEMA의 제조에 투과증발막의 적용가능성을 알아보기 위한 선행연구로서, 상용화된 폴리비닐알콜계 투과증발막(GFT Membrane Pervap^circledR1005)을 대상으로 반응물의 하나인 trifluoroethanol (TFEA)을 대상으로 온도와 농도의 변화에 따른 투과증발실험을 실시하였다. 투과증발실험 결과 TFEA 농도가 90에서 99 wt%로 높아질수록 투과용액 내의 물의 감소에 기인한 전체투과량은 감소하였다. TFEA/물 선택도는 95 wt% TFEA 농도까지는 높아지는 경향을 보였지만 97 wt%부터 감소하여 99 wt%에서는 급격히 감소하였다. 운전온도가 상승함에 따라 투과도의 증가와 더불어, 선택도도 증가하는 경향을 보였다. 적용된 TFEA 농도와 운전온도의 범위에서 GFT막은 물에 대한 우수한 투과도와 선택성을 보였다. 이러한 TFEA/물 혼합용액에 대한 높은 탈수성능은 GFT 투과증발막이 TFEMA의 에스테르화 막반응기에 적용될 수 있음을 확인시켜 주었다.
본 연구는 에스텔화 막반응공정에 의한 2,2,2-trifluoroethyl metacrylate (TFEMA)의 생산을 위한 선행연구로, 가교된 poly(vinyl alcohol) 복합막을 이용하여 TFEA (2,2,2-trifluoroethanol)/water 혼합용액을 대상으로 투과증발 특성을 연구하였다 복합막은 다공성 polyethersulfone (PES) 지지체 위에 PVA와 glutaraldehyde (GA)를 같이 녹인 수용액을 코팅한 후 산 촉매 하에서 열가교시킴으로써 제조하였다. SEM (scanning electron microscopy)을 통하여 선택층의 두께는 2-3 μm로 확인되었고, 제조한 PVA 코팅층의 수평윤도는 가교제의 농도가 증가함에 따라 감소하는 경향을 보였다. 투과증발 실험결과 가교제의 농도가 증가할수록, 투과도는 감소하고 TFEA/water의 선택도는 증가하는 경향을 보였다. 그리고 85-95wt%의 TFEA 혼합용액의 전범위에서 운전온도가 증가할수록 투과도는 증가하였지만, 선택도는 90 wt% TFEA 농도 이하에서는 감소하는 경향을 보인 반면, 95 wt%에서는 증가하는 흥미로운 경향을 보였다. 0.1 moi GA로 가교된 PVA 복합막은 운전온도 80℃, 90 wt% TFEA 농도에서 1.5 kg/m2hr의 매우 높은 투과도와 320의 선택도를 보였으며, 따라서 TFEA의 에스텔화 막반응공정에 적용 가능성을 보여주었다.
본 연구는 직접메탄을 연료전지(Direct Methanol Fuel Cell DMFC)용 전해질 막으로 이용되는 양이온교환막의 개발에 관한 것이다. 투과증발공정에서 메탄을 Barrier로 잘 알려져 있는 Poly(vinyl alcohol)을 Base polymer로 사용하고 양이온 교환기가 포함되어 있는 Poly(acrylic acid)를 가교제로 사용하여 가교제의 함량변화에 따른 메탄을 투과도(Methanol permeability) 이온전도도(Ion conductivity) 이온교환용량(Ion exchange capacity) 함수율(Water content) 고정이온농도(Fixed ion concentration)를 통해 막 특성을 측정하였다. 메탄올 투과도와 이온전도도는 가교제인 PAA함량이 증가함에 따라 감소하다가 15%이상에서는 증가하는 경향을 보였다. 이것은 가교제의 함량증가로 인한 가교의 영향과 가교제에 포함되어 있는 친수성기의 도입으로 이와 같은 결과가 나타난다고 예상된다. 실험결과를 통해 DMFC에 적용가능성이 있는 막은 25℃ 50℃에서의 메탄을 투과도가 6.49×10-8/cm2/s 2.85×10-7/cm2/s 25℃ 50℃에서의 이온전도도가 2.66×10-3S/cm 9.16×10-3S/cm 이온교환용량이 1.32 meq/g membrane 함수율이 0.25 g H2O/g membrane 고정이온농도가 5.25 meq/g H2O인 PVA/PAA-160℃ 15% 막으로 예측된다.