본 연구에서는 다공성 탄소 전극의 음극과 양극 표면에 각각 양이온교환고분자(Nafion)와 음이온교환고분자 (aminated polyphenylene oxide, APPO)를 코팅하여 막 결합형 축전식 탈염(membrane capacitive deionization, MCDI) 공정에 적용하였다. 또한 위 공정의 성능을 탄소 전극만으로 구성한 축전식 탈염(capacitive deionization, CDI) 공정과 비교 평가해 보고 염 제거 효율이 최대로 나타나는 MCDI 공정의 최적 운전 조건을 탐색하고자 하였다. 염 제거 효율은 MCDI 공정이 CDI 공정에 비해 높게 나타났으며 Nafion과 APPO를 적용한 MCDI 공정에서 흡착 조건이 1.2 V, 3 min이고 탈착 조건이 -1.0 V, 1 min 일 때의 염 제거 효율이 82.1%로 최댓값을 보임을 확인했다.
본 연구에서는 자연수, 하폐수에 많이 포함되어 있는 파울링 유발 물질 중 하나인 alginic acid sodium salt를 축전 식 탈염공정(capacity deionization, CDI)에서 파울링 감소를 위한 조건을 확립하고자 한다. 먼저 feed 물질로 NaCl을 사용하 였다. 이는 파울링 발생에 대한 비교 물질로, 파울링이 발생하지 않음을 관찰하였다. Alginic acid sodium salt를 사용하여 파 울링 발생 여부를 확인하였다. 농도는 7 mg/L, 흡착 1.2 V 5 min, 탈착 -2 V 1 min에서 효율이 50.07%으로 제일 효율적인 탈 착 조건임을 알 수 있었다.
본 연구에서는 기존의 CDI (capacitive deionization)를 이용해 산업 폐수에 함유되어있을 수 있는 바륨 이온 제거에 관해서 연구하였다. Feed 용액은 30 mg/L의 BaCl2 (barium chloride dihydrate) 수용액을 사용하였고, 유속은 10 mL/min 설정하였다. 흡착 조건을 1.2 V에서 3, 5, 7분으로, 탈착 조건은 각각 -1, -1.5, -2 V 및 1, 2, 3분으로 다양하게 조정하여 가장 효율이 높은 조건을 선정하는 실험을 진행하였고, 그 결과 흡착 1.2 V/7분 탈착 -1 V/1분의 조건에서 64.4%의 바륨 이온 제거효율을 나타내었다. 동일한 실험 조건으로 바륨과 같은 농도인 30 mg/L NaCl 수용액에 대하여 CDI의 제거효율과 비교 분석한 결과 흡착 1.2 V/7분 탈착 -1 V/1분의 조건에서 69.9%의 제거효율을 나타내었다.
본 연구에서는 축전식 탈염 공정에 분할 전극을 이용하여 탈염 성능을 향상하고자 하였다. 운전조건으로 NaCl 수용액에 대하여 20 mL/min의 유속과 1.2 V, 3분의 흡착 조건과 -1 V, 1분의 탈착 조건으로 전극의 분할 여부에 따른 탈염 효율을 측정함으로써 실험을 진행하였다. 분할되지 않은 전극에서는 유효면적이 146 cm2일 때 40%의 탈염 효율이 나타났고 분할 전극의 유효면적이 133 cm2일 때 57%의 탈염 효율을 보였다. 같은 분할된 전극에서 탈염 효율은 2 cm 간격을 두었을 때 49%, 1 cm의 간격을 두었을 때 57%로 확인되었다. 탈염 효율이 일반 CDI보다 분할 전극 CDI가 높았고 분할 전극 사이의 간격이 좁을수록 증가하였다.
본 연구에서는 대면적을 지니는 CDI 모듈의 흐름 향상을 위하여 유체가 들어가는 유입구로부터 면적이 증가하는 직사각형 형태의 유로를 설계하였다. 이를 바탕으로 설계된 모듈 형태에 대해 공급수의 흐름성과 사영역의 유무를 파악하였고 CFD 전산 유체 역학 프로그램을 통해 유로 내의 내부 압력, 유선 그리고 속도 벡터 분포를 분석하였으며 실제 흐름 관측과 CFD 프로그램을 비교 분석하였다. 실험 결과 모든 유속 10, 20, 30 mL/min에서 유로 내 사영역이 거의 발생하지 않았으며 공급수의 흐름성도 일정하게 유지되어 추후 대면적을 가지는 CDI 공정에 적용이 가능할 것이라 판단된다.
본 논문에서는 축전식 탈염 공정에서 파울링 현상의 확인과 파울링의 제거공정 조건을 확립하는 연구를 진행하였다. 공급액에 첨가된 파울링 유발 물질인 Humic acid sodium salt (HA)의 농도는 5, 10, 15 mg/L이었다. 주어진 일반의 흡/탈착 조건에서 파울링의 발생은 시간이 지남에 따라 흡착과 탈착 농도의 증가로 확인할 수 있었다. 파울링 현상을 제거하기 위해 흡착 및 탈착에서의 전압과 시간을 변경하였다. 이로부터 흡착 조건 1.2 V/5 min, 탈착 조건 -3 V/2 min에서 파울링 제거를 확인하였다.
본 연구는 분리막 성능 저하로 기능을 상실한 역삼투막의 힐링을 통한 복원의 가능성을 알아보고자 하는 데에 목적이 있다. 손상된 막은 양이온고분자인 poly(styrene sulfonic acid) sodium salt (PSSA)와 음이온고분자인 polyethyleneimine (PEI)를 염석법을 이용하여 이중으로 코팅했으며 또한 소재의 순서를 바꿔 코팅을 수행했다. 그리고 농도, 시간, 이온세기 등 에 따라 코팅된 역삼투막의 투과도와 배제율을 측정하여 손상된 막으로부터 복원된 정도를 알아보았다. 또한 역삼투 평막에서 복원이 우수한 조건을 가정용 정수기 모듈에 적용하여 손상된 역삼투막 모듈에 또한 대하여 복원 가능성을 알아보았다. 이로부터 PEI 30,000 ppm (IS = 0.1)/PSSA 20,000 ppm (IS = 0.7) 코팅 조건에서 역삼투막 모듈에 적용했을 때 염 배제율은 69%에서 86% (손상 전 모듈의 경우 90%)까지 복원되었다.
본 연구는 막 결합형 축전식 탈염공정에서의 이온교환막의 두께와 탈착간의 관계를 규명하기 위하여 진행하였다. APSf/SPEEK 양, 음이온교환고분자를 합성하여 시판되는 탄소전극에 직접 캐스팅하여 이온교환막이 결합된 탄소전극을 제조하였다. 양, 음이온교환고분자를 캐스팅 하지 않은 것, 1회 캐스팅, 2회 캐스팅한 것으로 탈착시험을 하였다. 탈착 조건은 –0.1, -0.3, -0.5, -1.0 V로 하였으며 100 mg/L의 NaCl 수용액을 공급액으로 하여 완전 흡착을 한 다음 증류수로 공급액을 변경하여 완전탈착이 될 때 까지 관찰 하였다. 이온교환막의 두께가 두꺼워질수록 완전탈착까지 걸리는 시간이 증가하였고 높은 전위의 탈착 전압에서는 막의 두께가 탈착에 그다지 큰 영향을 끼치지 않는 것을 확인하였다.
본 연구에서는 차아염소산 나트륨에 노출시켜 손상된 RO membrane을 PSSA/PEI 용액으로 코팅하여 투과성능을 회복시키는 연구를 진행하였다. 코팅에 사용된 고분자로는 PEI(Polyethyleneimine) 와 PSSA(Polystyrene sulfonic acid)을 사용하였으며, 막은 3,450ppm의 차아염소산에 용액에 노출시켜 손상시켰다. PSSA와 PEI의 농도, 코팅시간, 이온세기를 달리하여 NaCl 100 ppm에서 투과성능을 비교하였다. 코팅을 통한 막의 투과성능을 비교하였을 때 ,제거율이 약 15%정도의 회복률을 보였다. 또한 SEM 분석을 통해 차아염소산에 손상 전과 후 그리고 코팅된 막의 표면을 관찰하였다.
Polyvinylidene fluoride (PVDF)의 중공사막 표면에 2번 딥코팅하여 layer-by-layer 방식으로 나노복합막을 제조하 였다. 1차 코팅에서 poly(vinylsulfonic acid)(PVSA)와 Poly(styrene sulfonic acid)(PSSA)의 농도, 이온세기(Ionic strength, IS) 등을 변화시키며 막을 제조하였으며, 2차 코팅 용액으로는 Poly(ethyleneimine) 10,000 ppm I.S = 0.3으로 고정하였다. 막의 특성평가를 위해 각각의 100 ppm NaCl, CaSO4, MgCl2, 그리고 25 ppm Methyl Orange (MO) 공급액에 대한 막의 투과도와 염배제율을 측정하였다. 코팅용액의 코팅 물질의 농도가 올라갈수록 염배제율이 상승하였으며, 본 실험 조건에서 PVSA보다 는 PSSA를 이용하여 제조한 중공사막이 염배제율이 높은 것을 확인하였다. 대표적으로 PSSA 30,000 ppm I.S = 1.0에서 중공사막을 제조하였을 때 25 ppm MO용액의 투과도 1.848 LMH, 염배제율 76.3%로 가장 높은 값을 나타내었다.
본 연구에서는 시판되는 역삼투법(reverse osmosis)용 UF평막을 이용하여 -NH기를 가지고 있는 piperazine (PIP)과 -COCl기를 가지고 있는 trimesoyl chloride (TMC)의 계면중합을 통해 나노복합막을 제조하였다. UF평막을 PIP수용액에 침지시킨 후 TMC를 녹인 hexane 용액에 침지시켜 계면중합반응을 진행하였고, 별도의 건조과정 없이 초순수에 세척하여 나노복합막을 제조하였다. PIP와 TMC의 농도, 침지 시간, 친수화 유무, 공급액의 종류 등을 달리하여 제조한 나노복합막의 투과도 및 염 배제율을 측정하였다.
본 연구에서는 이온교환막을 결합한 막 결합형 축전식 탈염공정으로 적용하여 진행하였다. 막 결합형 축전식 탈염공정에서 흡착전압과 이온교환막의 두께가 흡착성능에 미치는 영향을 알아보았다. 흡착전압을 0.5, 1, 1.4 V로 달리하였고 흡착전압이 증가함에 따라 강한인력으로 인해 많은 이온들의 흡착으로 배출수 농도의 최소점이 낮아지고 전극이 포화상태가 되기까지의 운전시간이 증가하였다. 이온교환막의 두께를 1, 2, 3회로 코팅횟수를 달리하였고 막이 두꺼울수록 막 내에서 이온들의 움직임이 원활하지 않아 감소된 흡착성능을 확인하였다. 이온교환막의 적합한 두께는 1회 코팅했을 때 3.85 ㎛의 두께를 보였다.