고순도 프로필렌(프로펜)은 옥탄가를 높이는 화합물이며 산업적으로 중요한 화합물들의 원료가 된다. 프로판 혼합물로부터 프로펜을 정제하는 것은 비슷한 끓는점으로 인해 기술적으로 어려우며, 큰 비용이 요구된다. ZIF-8 분리막은 분 자체 메커니즘에 의해 효율적으로 프로판으로부터 프로필렌을 분리할 수 있는 가능성 때문에 많은 연구가 진행되고 있다. ZIF-8 분리막에 대한 관심이 커지는 것은 소위 “gate opening” 효과 때문이다. 프로필렌/프로판 혼합물로부터 프로필렌 분리를 높이기 위해 “gate opening” 효과는 분리막 기공을 확장시켜 더 크고 무거운 프로판은 피드 흐름에 유지시키며, 프로필렌 만 선택적으로 투과할 수 있도록 한다. 본 논문에서는 ZIF-8 분리막 제조에 널리 적용되는 방법들과 분리막을 통한 프로필렌 투과도 및 선택도에 영향을 주는 인자들에 대해 살펴보고자 한다.
염료감응형 태양전지는 지속 가능한 에너지원으로서 많은 관심을 받고 있다. 염료감응형 태양전지의 효율과 장기 안정성은 전극 물질과 전해질에 의해 크게 영향을 받는데 본 총설에서는 전해질에 초점을 두어 서술하고자 한다. 고분자 전해질막은 염료감응형 태양전지에서 기존의 액체 전해질을 대체하기 위한 대안으로 제시되어 왔다. 기존의 액체 전해질은 높 은 효율을 나타낼 수 있지만 장기적인 안정성 문제와 누액 문제로 인해 고분자 전해질막에 관한 관심은 지속적으로 증가하고 있으며 매년 이와 관련된 논문들이 활발히 보고되고 있다. 본 총설은 염료감응형 태양전지를 위한 고분자 전해질막의 개념과 개발에 대한 간단한 설명을 다루고 있으며 고분자 매트릭스의 개질, 유-무기 가소제 및 이온성 액체와 같은 첨가제의 도입에 따른 염료감응형 태양전지의 효율과 전기화학적 특성에 대해서도 최근의 연구들이 정리되어 있다.
올레핀은 석유화학산업에서 대부분의 물질의 근간이 되는 핵심적인 물질이며 특히 고분자 합성에 있어 매우 중요하다. 이러한 올레핀 물질을 효율적으로 분리/가공하는 공정은 산업발전에 있어 지대한 영향을 끼친다. 본 연구에서는 올레핀 물질 중 프로필렌 기체를 선택적으로 분리하는 고분자 복합막을 제조하여 투과 및 선택 성능을 증대시키고자 고투과성 매질 인 poly(1-trimethylsilyl-1-propyne) (PTMSP)에 양친성 고분자를 이용하여 개질하였다. 또한 올레핀 분자와 상호작용이 있는 AgBF4 염 및 촉진수송을 극대화 시키기 위하여 이온성 액체인 EMIM-BF4를 첨가하여 올레핀/질소 투과 분리 성능을 향상시 켰다. 기존 PTMSP 복합막의 경우 굉장히 높은 자유부피를 가져 높은 기체 투과성능을 보이는 반면 투과시키고자 하는 기체에 대한 선택적인 분리 성능이 매우 떨어져 낮은 선택도를 보인다. 이를 극복하고자 양친성 고분자를 PTMSP 계면에 그래프트 공중합을 시켰으며 올레핀과 높은 상호작용을 보이는 AgBF4 염 및 EMIM-BF4 이온성 액체를 첨가하여 프로필렌/질소에 대한 선택도를 향상시켰다.
본 연구는 분리막 성능 저하로 기능을 상실한 역삼투막의 힐링을 통한 복원의 가능성을 알아보고자 하는 데에 목적이 있다. 손상된 막은 양이온고분자인 poly(styrene sulfonic acid) sodium salt (PSSA)와 음이온고분자인 polyethyleneimine (PEI)를 염석법을 이용하여 이중으로 코팅했으며 또한 소재의 순서를 바꿔 코팅을 수행했다. 그리고 농도, 시간, 이온세기 등 에 따라 코팅된 역삼투막의 투과도와 배제율을 측정하여 손상된 막으로부터 복원된 정도를 알아보았다. 또한 역삼투 평막에서 복원이 우수한 조건을 가정용 정수기 모듈에 적용하여 손상된 역삼투막 모듈에 또한 대하여 복원 가능성을 알아보았다. 이로부터 PEI 30,000 ppm (IS = 0.1)/PSSA 20,000 ppm (IS = 0.7) 코팅 조건에서 역삼투막 모듈에 적용했을 때 염 배제율은 69%에서 86% (손상 전 모듈의 경우 90%)까지 복원되었다.
다공성 분리막은 입자성 물질을 제거하는데 산업적으로 다양하게 응용되고 있다. 기존 다공성 분리막 제작 방법 과 다르게, 용액퍼짐 상분리법은 매우 간단하게 기공을 형성할 수 있다. 먼저 지지층으로 메쉬 위에 물을 적신 후, 물과 혼합 되지 않은 용매에 폴리설폰 용액을 흘려준다. 이때 물과 혼합되지 않은 용매는 쉽게 기화되어 폴리설폰은 얇은 막으로 만들어지게 된다. 기공을 형성하기 위해 폴리설폰 용액에 물과 혼합할 수 있는 물질을 넣게 되면, 넣어주는 농도 비율에 따라 기공크기를 조절할 수 있게 된다. 막의 두께는 쉽게 용액의 농도로 조절이 된다. 다공성 분리막은 메쉬의 형성을 그대로 유지하고 있어 3차원 구조체를 형성하는데 매우 유용하다. 본 연구에서 제시된 용액 퍼짐 상분리법은 매우 낮은 생산단가와 쉬운 공정조절에 의해 기존 분리막에 비해 높은 가격경쟁력을 가질 수 있는 특징을 보이고 있다.
정삼투 공정에 유용한 유도용질로서 diethyl malonate를 사용한 citrate 계열의 유기 화합물을 합성하였다. 최종적으로 얻은 potassium pentane-1,3,3,5-tetracarboxylate는 1H-NMR과 13C-NMR을 통하여 확인하였다. 유도용질의 물성을 확인 하기 위해 삼투압, 용해도, 수투과도, 역염 투과도를 측정하였다. 합성한 유도용액을 사용하여 정삼투 공정을 진행한 결과, 동일한 citrate 계열인 trisodium citrate 및 tripotassium citrate보다 높은 수투과량을 나타내었으며 염의 역확산 정도는 NaCl에 비하여 매우 낮은 값을 나타내었다. 합성된 유도용질의 삼투압은 NaCl보다 약 25% 낮았으나 물에 대한 용해도는 NaCl의 8.8 배인 317 g/100 g water의 값을 나타내었다. 정삼투 종료 후 유도용질의 회수를 위해 상용화된 나노여과막을 사용하였고, 낮은 압력에서 효율적으로 회수가 가능하였다.